The inverse problem for a discrete periodic Schrödinger operator

被引:0
作者
Korotyaev E. [1 ]
Kutsenko A. [2 ,3 ]
机构
[1] Institut für Mathematik, Humboldt Universität zu Berlin
[2] St.Petersburg State University, St.Petersburg
[3] Institut für Mathematik, Universität Potsdam
关键词
Endpoint; Inverse Problem; Large Potential; Periodic Potential; Discrete Periodic;
D O I
10.1007/s10958-006-0104-z
中图分类号
学科分类号
摘要
We study isospectral sets for a discrete 1D Schrodinger operator on ℤ with an (N + 1)-periodic potential. We show that for small odd potentials, the isospectral set consists of 2(N + 1)/2 elements, while for large potentials, the isospectral set consists of (N +1)! elements. Moreover, asymptotics for endpoints of the spectrum of the Schrodinger operator for small (and large) potentials are determined. ©2006 Springer Science+Business Media, Inc.
引用
收藏
页码:2292 / 2294
页数:2
相关论文
共 5 条
[1]  
Marchenko V.A., Sturm-Liouville Operators and Their Applications [In Russian], (1977)
[2]  
Van Moerbeke P., The spectrum of Jacobi matrices, Invent. Math., 37, pp. 45-81, (1976)
[3]  
Last Y., On the measure of gaps and spectra for discrete 1D Schrop̈dinger operators, Comm. Math. Phys., 149, pp. 347-360, (1992)
[4]  
Korotyaev E., Krasovsky I., Spectral estimates for periodic Jacobi matrices, Comm. Math. Phys., 234, pp. 517-532, (2003)
[5]  
Perkolab L., An inverse problem for a periodic Jacobi matrix, Teor. Funkts. Anal. Prilozh., 42, pp. 107-121, (1984)