共 13 条
[1]
Chen J., O'Malley R.E., On the asymptotic solution of a two-parameter boundary value problem of chemical reactor theory, SIAM J. Appl. Math., 26, 4, pp. 717-729, (1974)
[2]
Clavero C., Jorge J.C., Lisbona F., A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems, J. Comput. Appl. Math., 154, pp. 415-429, (1974)
[3]
Das P., Mehrmann V., Numerical solution of singularly perturbed convection–diffusion–reaction problems with two small parameters, BIT. Numer. Math., 56, 1, pp. 51-76, (2016)
[4]
Diprima R.C., Asumptotic methods for an infinitely long slider squeeze-film bearing, Trans. ASME Ser. F. J. Lub. Tech., 90, pp. 173-183, (1968)
[5]
Kopteva N., Uniform pointwise convergence of difference schemes for convection–diffusion problems on layer-adapted meshes, Computing, 66, 2, pp. 179-197, (2001)
[6]
Linss T., An upwind difference scheme on a novel shishkin-type mesh for a linear convection–diffusion problem, J. Comput. Appl. Math., 110, pp. 93-104, (1999)
[7]
Miller J.J.H., O'Riordan E., Shishkin G.I., Shishkina L.P., Fitted mesh methods for problems with parabolic boundary layers, Math. Proc. R. Ir. Acad, 98A, 2, pp. 173-190, (1998)
[8]
O'Riordan E., Pickett M.L., Shishkin G., Singularly perturbed problems modeling reaction–convection– diffusion processes, Comput. Methods Appl. Math., 3, 3, pp. 424-442, (2003)
[9]
O'Riordan E., Pickett M.L., Shishkin G., Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion–convection–reaction problems, Math. Comput., 75, 255, pp. 1135-1154, (2006)
[10]
Raji Reddy N., Mohapatra J., An efficient numerical method for singularly perturbed two point boundary value problems exhibiting boundary layers, Natl. Acad. Sci. Lett., 38, 4, pp. 355-359, (2015)