Uniformly convergent numerical method for singularly perturbed two parameter time delay parabolic problem

被引:0
作者
Govindarao L. [1 ]
Mohapatra J. [1 ]
Sahu S.R. [1 ]
机构
[1] Department of Mathematics, National Institute of Technology, Rourkela
关键词
Singular perturbation; Time delay; Two parameter problem; Uniform convergence; Upwind scheme;
D O I
10.1007/s40819-019-0672-5
中图分类号
学科分类号
摘要
This paper discusses the numerical solution of one dimensional parabolic convection– reaction–diffusion time delay problem with two small parameters. For the discretization of the time derivative, we use the implicit Euler scheme on a uniform mesh and for the spatial discretization, we use the upwind difference scheme on the Shishkin type meshes (standard Shishkin mesh, Bakhvalov–Shishkin mesh). We prove that numerically the proposed method is provides a first order convergence, which is optimal for this case. Finally, to support the theoretical results, we present some numerical experiments using the proposed method. © Springer Nature India Private Limited 2019.
引用
收藏
相关论文
共 13 条
[1]  
Chen J., O'Malley R.E., On the asymptotic solution of a two-parameter boundary value problem of chemical reactor theory, SIAM J. Appl. Math., 26, 4, pp. 717-729, (1974)
[2]  
Clavero C., Jorge J.C., Lisbona F., A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems, J. Comput. Appl. Math., 154, pp. 415-429, (1974)
[3]  
Das P., Mehrmann V., Numerical solution of singularly perturbed convection–diffusion–reaction problems with two small parameters, BIT. Numer. Math., 56, 1, pp. 51-76, (2016)
[4]  
Diprima R.C., Asumptotic methods for an infinitely long slider squeeze-film bearing, Trans. ASME Ser. F. J. Lub. Tech., 90, pp. 173-183, (1968)
[5]  
Kopteva N., Uniform pointwise convergence of difference schemes for convection–diffusion problems on layer-adapted meshes, Computing, 66, 2, pp. 179-197, (2001)
[6]  
Linss T., An upwind difference scheme on a novel shishkin-type mesh for a linear convection–diffusion problem, J. Comput. Appl. Math., 110, pp. 93-104, (1999)
[7]  
Miller J.J.H., O'Riordan E., Shishkin G.I., Shishkina L.P., Fitted mesh methods for problems with parabolic boundary layers, Math. Proc. R. Ir. Acad, 98A, 2, pp. 173-190, (1998)
[8]  
O'Riordan E., Pickett M.L., Shishkin G., Singularly perturbed problems modeling reaction–convection– diffusion processes, Comput. Methods Appl. Math., 3, 3, pp. 424-442, (2003)
[9]  
O'Riordan E., Pickett M.L., Shishkin G., Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion–convection–reaction problems, Math. Comput., 75, 255, pp. 1135-1154, (2006)
[10]  
Raji Reddy N., Mohapatra J., An efficient numerical method for singularly perturbed two point boundary value problems exhibiting boundary layers, Natl. Acad. Sci. Lett., 38, 4, pp. 355-359, (2015)