Cofinality of normal ideals on [λ]<κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\lambda ]^{<\kappa }$$\end{document} I

被引:0
作者
Pierre Matet
Cédric Péan
Saharon Shelah
机构
[1] Université de Caen,Laboratoire de Mathématiques, CNRS
[2] Nexways,Einstein Institute of Mathematics
[3] The Hebrew University of Jerusalem,Department of Mathematics, Hill Center for the Mathematical Sciences
[4] Rutgers University,undefined
关键词
Normal ideal; 03E05; 03E55; 03E35;
D O I
10.1007/s00153-016-0496-5
中图分类号
学科分类号
摘要
An ideal J on [λ]<κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\lambda ]^{<\kappa }$$\end{document} is said to be [δ]<θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\delta ]^{<\theta }$$\end{document}-normal, where δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} is an ordinal less than or equal to λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} a cardinal less than or equal to κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}, if given Be∈J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_e \in J$$\end{document} for e∈[δ]<θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e \in [\delta ]^{<\theta }$$\end{document}, the set of all a∈[λ]<κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in [\lambda ]^{<\kappa }$$\end{document} such that a∈Be\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in B_e$$\end{document} for some e∈[a∩δ]<|a∩θ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e \in [a \cap \delta ]^{< \vert a \cap \theta \vert }$$\end{document} lies in J. We give necessary and sufficient conditions for the existence of such ideals and describe the smallest one, denoted by NSκ,λ[δ]<θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NS_{\kappa ,\lambda }^{[\delta ]^{<\theta }}$$\end{document}. We compute the cofinality of NSκ,λ[δ]<θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NS_{\kappa ,\lambda }^{[\delta ]^{<\theta }}$$\end{document}.
引用
收藏
页码:799 / 834
页数:35
相关论文
共 19 条
  • [1] Abe Y(1997)A hierarchy of filters smaller than Arch. Math. Log. 36 385-397
  • [2] Carr DM(1982)The minimal normal filter on Proc. Am. Math. Soc. 86 316-320
  • [3] Carr DM(1990)On the existence of strongly normal ideals on Arch. Math. Log. 30 59-72
  • [4] Levinski JP(1993)Two cardinal versions of diamond Isr. J. Math. 83 1-43
  • [5] Pelletier DH(1999)On Radovi Matematički 9 145-155
  • [6] Donder HD(1989)-combinatorics using a third cardinal J. Symb. Log. 54 467-473
  • [7] Matet P(1971)An ideal characterization of Mahlo cardinals Not. Am. Math. Soc. 18 663-62
  • [8] Džamonja M(1988)The closed unbounded filter on C. R. Acad. Sci. Paris Sér. I 307 61-111
  • [9] Feng Q(2003)Un principe combinatoire en relation avec l’ultranormalité des idéaux Ann. Pure Appl. Log. 121 89-181
  • [10] Jech TJ(2006)Partition relations for J. Math. Soc. Jpn. 58 153-75