The Ponzano–Regge Model and Parametric Representation

被引:0
作者
Dan Li
机构
[1] Florida State University,Department of Mathematics
来源
Communications in Mathematical Physics | 2014年 / 327卷
关键词
Span Tree; Parametric Representation; Star Product; Multiple Zeta; Grothendieck Ring;
D O I
暂无
中图分类号
学科分类号
摘要
We give a parametric representation of the effective noncommutative field theory derived from a κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document} -deformation of the Ponzano–Regge model and define a generalized Kirchhoff polynomial with κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document} -correction terms, obtained in a κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document} -linear approximation. We then consider the corresponding graph hypersurfaces and the question of how the presence of the correction term affects their motivic nature. We look in particular at the tetrahedron graph, which is the basic case of relevance to quantum gravity. With the help of computer calculations, we verify that the number of points over finite fields of the corresponding hypersurface does not fit polynomials with integer coefficients, hence the hypersurface of the tetrahedron is not polynomially countable. This shows that the correction term can change significantly the motivic properties of the hypersurfaces, with respect to the classical case.
引用
收藏
页码:243 / 260
页数:17
相关论文
共 33 条
  • [1] Aluffi P.(2013)A motivic approach to phase transitions in Potts models J. Geom. Phys. 63 6-31
  • [2] Marcolli M.(2003)Matroids, motives, and a conjecture of Kontsevich Duke Math. J. 116 147-188
  • [3] Belkale P.(2004)The universal Euler characteristic for varieties of characteristic zero Compos. Math. 140 1011-1032
  • [4] Brosnan P.(2007)Motives associated to graphs Jpn. J. Math. 2 165-196
  • [5] Bittner F.(2006)On motives associated to graph polynomials Commun. Math. Phys. 267 181-225
  • [6] Bloch S.(1997)Association of multiple zeta values with positive knots via feynman diagrams up to 9 loops Phys. Lett. B 393 403-412
  • [7] Bloch S.(2009)Multiple zeta values and periods of moduli spaces Annales scientifiques de l’ENS 42 371-489
  • [8] Esnault E.(2012)A K3 in ϕ Duke Math. J. 161 1817-1862
  • [9] Kreimer D.(2006)Effective 3d quantum gravity and non-commutative quantum field theory Phys. Rev. Lett. 96 221301-5726
  • [10] Broadhurst D.(2006)Ponzano–Regge model revisited III: Feynman diagrams and effective field theory Class Quant. Grav. 23 2021-176