A class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problems

被引:0
作者
Li-Ping Pang
Fan-Yun Meng
Jian-Song Yang
机构
[1] Dalian University of Technology,School of Mathematical Sciences
[2] Key Laboratory for Computational Mathematics and Data Intelligence of Liaoning Province,School of Information and Control Engineering
[3] Qingdao University of Technology,undefined
来源
Journal of Global Optimization | 2023年 / 85卷
关键词
Multi-objective optimization; Bundle method; Nonsmooth optimization; 90C25; 49J40; 90C20;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a class of infeasible proximal bundle methods for solving nonsmooth nonconvex multi-objective optimization problems. The proposed algorithms have no requirements on the feasibility of the initial points. In the algorithms, the multi-objective functions are handled directly without any scalarization procedure. To speed up the convergence of the infeasible algorithm, an acceleration technique, i.e., the penalty skill, is applied into the algorithm. The strategies are introduced to adjust the proximal parameters and penalty parameters. Under some wild assumptions, the sequence generated by infeasible proximal bundle methods converges to the globally Pareto solution of multi-objective optimization problems. Numerical results shows the good performance of the proposed algorithms.
引用
收藏
页码:891 / 915
页数:24
相关论文
共 59 条
[1]  
Fliege J(2016)A method for constrained multiobejctive optimization based on SQP techniques SIAM 26 2091-2119
[2]  
Ismael A(2016)A proximal bundle method for nonsmooth nonconvex functions with inexact information Comput. Optim. Appl. 63 1-28
[3]  
Hare W(1985)A descent method for nonsmooth convex multiobjective minimization Large Scale Syst. 8 119-129
[4]  
Sagastizbal C(1985)An algorithm for nonsmooth convex minimization with errors Math. Comput. 45 173-180
[5]  
Solodov M(2006)A proximal bundle method with approximate subgradient linearizations SIAM J. Optim. 16 1007-1023
[6]  
Kiwiel KC(1990)Proximity control in bundle methods for convex nondifferentiable Optimization Math. Program. 46 105-122
[7]  
Kiwiel KC(2019)An infeasible bundle method for nonconvex constrained optimization with application to semi-infinite programming problems Numer. Algorithms 80 397-427
[8]  
Kiwiel KC(2018)Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints J. Glob. Optim. 72 403-429
[9]  
Kiwiel KC(2014)Proximal bundle method for nonsmooth and nonconvex multiobjective optimization Math. Model. Optim. Mech. 68 537-562
[10]  
Lv J(2017)An approximate bundle method for solving nonsmooth equilibrium problems J. Glob. Optim. 34 231-246