Improved regularity for the parabolic normalized p-Laplace equation

被引:0
作者
Pêdra D. S. Andrade
Makson S. Santos
机构
[1] Universidade de São Paulo,Instituto de Ciências Matemáticas e de Computação
来源
Calculus of Variations and Partial Differential Equations | 2022年 / 61卷
关键词
35B65; 35K55; 35Q91;
D O I
暂无
中图分类号
学科分类号
摘要
We derive regularity estimates for viscosity solutions to the parabolic normalized p-Laplace. By using approximation methods and scaling arguments for the normalized p-parabolic operator, we show that the gradient of bounded viscosity solutions is locally asymptotically Lipschitz continuous when p is sufficiently close to 2. In addition, we establish regularity estimates in Sobolev spaces.
引用
收藏
相关论文
共 62 条
[1]  
Araújo D(2017)A proof of the Adv. Math. 316 541-553
[2]  
Teixeira E(2020)-regularity conjecture in the plane Nonlinear Anal. 199 1750035-1961
[3]  
Urbano JM(2018)Local regularity for quasi-linear parabolic equations in non-divergence form Commun. Contemp. Math. 20 1922-5972
[4]  
Attouchi A(2018)Hölder regularity for the gradient of the inhomogeneous parabolic normalized J. Differ. Equ. 265 5955-736
[5]  
Attouchi A(2020)-Laplacian Discrete Contin. Dyn. Syst. 40 699-213
[6]  
Parviainen M(2013)Remarks on regularity for Indiana Univ. Math. J. 62 189-2053
[7]  
Attouchi A(1989)-Laplacian type equations in non-divergence form Ann. Math. (2) 130 1997-1648
[8]  
Ruosteenoja E(2000)Gradient regularity for a singular parabolic equation in non-divergence form Comm. Partial Differ. Equ. 25 1623-396
[9]  
Attouchi A(2017)Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations Math. Ann. 369 361-2451
[10]  
Ruosteenoja E(2011)Interior a priori estimates for solutions of fully nonlinear equations Commun. Pure Appl. Anal. 10 2412-232