Application of the dynamic mode decomposition to experimental data

被引:0
|
作者
Peter J. Schmid
机构
[1] Ecole Polytechnique,Laboratoire d’Hydrodynamique (LadHyX)
来源
Experiments in Fluids | 2011年 / 50卷
关键词
Shear Layer; Proper Orthogonal Decomposition; Proper Orthogonal Decomposition Mode; Dynamic Mode Decomposition; Arnoldi Method;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamic mode decomposition (DMD) is a data-decomposition technique that allows the extraction of dynamically relevant flow features from time-resolved experimental (or numerical) data. It is based on a sequence of snapshots from measurements that are subsequently processed by an iterative Krylov technique. The eigenvalues and eigenvectors of a low-dimensional representation of an approximate inter-snapshot map then produce flow information that describes the dynamic processes contained in the data sequence. This decomposition technique applies equally to particle-image velocimetry data and image-based flow visualizations and is demonstrated on data from a numerical simulation of a flame based on a variable-density jet and on experimental data from a laminar axisymmetric water jet. In both cases, the dominant frequencies are detected and the associated spatial structures are identified.
引用
收藏
页码:1123 / 1130
页数:7
相关论文
共 50 条
  • [41] Challenges in dynamic mode decomposition
    Wu, Ziyou
    Brunton, Steven L.
    Revzen, Shai
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2021, 18 (185)
  • [42] Robust Dynamic Mode Decomposition
    Abolmasoumi, Amir Hossein
    Netto, Marcos
    Mili, Lamine
    IEEE ACCESS, 2022, 10 : 65473 - 65484
  • [43] Constrained Dynamic Mode Decomposition
    Krake T.
    Klotzl D.
    Eberhardt B.
    Weiskopf D.
    IEEE Trans Visual Comput Graphics, 2023, 1 (182-192): : 182 - 192
  • [44] Randomized Dynamic Mode Decomposition
    Erichson, N. Benjamin
    Mathelin, Ionel
    Kutz, J. Nathan
    Brunton, Steven L.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (04): : 1867 - 1891
  • [45] Bayesian Dynamic Mode Decomposition
    Takeishi, Naoya
    Kawahara, Yoshinobu
    Tabei, Yasuo
    Yairi, Takehisa
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2814 - 2821
  • [46] Output Dynamic Mode Decomposition: An extension of Dynamic Mode Decomposition based on output functional expansions
    Runolfsson, Thordur
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 7148 - 7152
  • [47] Mode decomposition methods and their application in ground penetrating radar data processing
    ZHOU Weifan
    ZENG Zhaofa
    LI Jing
    Global Geology, 2019, 22 (03) : 199 - 208
  • [48] Application of empirical mode decomposition (EMD) in processing data of the slope deformation
    Xu Jia
    Ma Fenghai
    Huang Shengxiang
    Yang Fan
    3RD INTERNATIONAL SYMPOSIUM ON MODERN MINING & SAFETY TECHNOLOGY PROCEEDINGS, 2008, : 817 - 820
  • [49] Application of Dynamic Mode Decomposition to Characterize Temporal Evolution of Plantar Pressures from Walkway Sensor Data in Women with Cancer
    Seo, Kangjun
    Refai, Hazem H.
    Hile, Elizabeth S.
    SENSORS, 2024, 24 (02)
  • [50] Application of Borehole Radar Data Processing Based on Empirical Mode Decomposition
    Zuo, Xuzhou
    Ma, Chunguang
    Xiao, Jianoing
    Zhao, Qing
    JOURNAL OF ENVIRONMENTAL AND ENGINEERING GEOPHYSICS, 2019, 24 (03) : 409 - 418