Application of the dynamic mode decomposition to experimental data

被引:0
|
作者
Peter J. Schmid
机构
[1] Ecole Polytechnique,Laboratoire d’Hydrodynamique (LadHyX)
来源
Experiments in Fluids | 2011年 / 50卷
关键词
Shear Layer; Proper Orthogonal Decomposition; Proper Orthogonal Decomposition Mode; Dynamic Mode Decomposition; Arnoldi Method;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamic mode decomposition (DMD) is a data-decomposition technique that allows the extraction of dynamically relevant flow features from time-resolved experimental (or numerical) data. It is based on a sequence of snapshots from measurements that are subsequently processed by an iterative Krylov technique. The eigenvalues and eigenvectors of a low-dimensional representation of an approximate inter-snapshot map then produce flow information that describes the dynamic processes contained in the data sequence. This decomposition technique applies equally to particle-image velocimetry data and image-based flow visualizations and is demonstrated on data from a numerical simulation of a flame based on a variable-density jet and on experimental data from a laminar axisymmetric water jet. In both cases, the dominant frequencies are detected and the associated spatial structures are identified.
引用
收藏
页码:1123 / 1130
页数:7
相关论文
共 50 条
  • [31] Singular Dynamic Mode Decomposition
    Rosenfeld, Joel A.
    Kamalapurkar, Rushikesh
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03): : 2357 - 2381
  • [32] Multiresolution Dynamic Mode Decomposition
    Kutz, J. Nathan
    Fu, Xing
    Brunton, Steven L.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (02): : 713 - 735
  • [33] A characteristic dynamic mode decomposition
    Sesterhenn, Joern
    Shahirpour, Amir
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (3-4) : 281 - 305
  • [34] Applications of the dynamic mode decomposition
    P. J. Schmid
    L. Li
    M. P. Juniper
    O. Pust
    Theoretical and Computational Fluid Dynamics, 2011, 25 : 249 - 259
  • [35] Convergent Dynamic Mode Decomposition
    Rosenfeld, Joel A.
    Kamalapurkar, Rushikesh
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4972 - 4977
  • [36] A characteristic dynamic mode decomposition
    Jörn Sesterhenn
    Amir Shahirpour
    Theoretical and Computational Fluid Dynamics, 2019, 33 : 281 - 305
  • [37] Dynamic mode decomposition with memory
    Anzaki, Ryoji
    Sano, Kei
    Tsutsui, Takuro
    Kazui, Masato
    Matsuzawa, Takahito
    PHYSICAL REVIEW E, 2023, 108 (03)
  • [38] Dynamic Mode Decomposition with Control
    Proctor, Joshua L.
    Brunton, Steven L.
    Kutz, J. Nathan
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 142 - 161
  • [39] Consistent Dynamic Mode Decomposition
    Azencot, Omri
    Yin, Wotao
    Bertozzi, Andrea
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (03): : 1565 - 1585
  • [40] Applications of the dynamic mode decomposition
    Schmid, P. J.
    Li, L.
    Juniper, M. P.
    Pust, O.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2011, 25 (1-4) : 249 - 259