Classification of extremal type II Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}-codes of length 24

被引:0
作者
Akihiro Munemasa
Rowena Alma L. Betty
机构
[1] Tohoku University,Graduate School of Information Sciences
[2] University of the Philippines-Diliman,Institute of Mathematics
关键词
Self-dual code; Type II code; Free code; Extremal code; Classification; 94B25; 15A63;
D O I
10.1007/s10623-023-01293-7
中图分类号
学科分类号
摘要
In this paper, we give a classification of extremal Type II Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}-codes of length 24. This is equivalent to a classification of 4-frames of the Leech lattice up to the action of the automorphism group.
引用
收藏
页码:771 / 785
页数:14
相关论文
共 26 条
[11]  
Betty RAL(1999)-codes and the moonshine vertex operator algebra Discret. Math. 203 215-228
[12]  
Munemasa A(undefined)Classification of ternary extremal self-dual codes of length undefined undefined undefined-undefined
[13]  
Bosma W(undefined)Decompositions and extremal Type II codes over undefined undefined undefined-undefined
[14]  
Cannon J(undefined)Optimal self-dual codes over undefined undefined undefined-undefined
[15]  
Playoust C(undefined)undefined undefined undefined undefined-undefined
[16]  
Conway JH(undefined)undefined undefined undefined undefined-undefined
[17]  
Sloane NJA(undefined)undefined undefined undefined undefined-undefined
[18]  
Harada M(undefined)undefined undefined undefined undefined-undefined
[19]  
Harada M(undefined)undefined undefined undefined undefined-undefined
[20]  
Lam CH(undefined)undefined undefined undefined undefined-undefined