Nuclear resonance fluorescence drug inspection

被引:0
|
作者
Haoyang Lan
Tan Song
Xingde Huang
Shengqiang Zhao
Jianliang Zhou
Zhichao Zhu
Yi Xu
Dimiter L. Balabanski
Wen Luo
机构
[1] University of South China,School of Nuclear Science and Technology
[2] Extreme Light Infrastructure Nuclear Physics (ELI-NP),National Exemplary Base for International Sci and Tech. Collaboration of Nuclear Energy and Nuclear Safety
[3] Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH),undefined
[4] University of South China,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There is an increasing challenge to prevent illicit drug smuggling across borders and seaports. However, the existing techniques in-and-of-themselves are not sufficient to identify the illicit drugs rapidly and accurately. In the present study, combining nuclear resonance fluorescence (NRF) spectroscopy and the element (or isotope) ratio approach, we present a novel inspection method that can simultaneously reveal the elemental (or isotopic) composition of the illicit drugs, such as widely abused methamphetamine, cocaine, heroin, ketamine and morphine. In the NRF spectroscopy, the nuclei are excited by the induced photon beam, and measurement of the characteristic energies of the emitted γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} rays from the distinct energy levels in the excited nuclei provides “fingerprints” of the interested elements in the illicit drugs. The element ratio approach is further used to identify drug elemental composition in principle. Monte Carlo simulations show that four NRF peaks from the nuclei 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}$$\end{document}C, 14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{14}$$\end{document}N and 16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{16}$$\end{document}O can be detected with high significance of 7−24σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} using an induced photon beam flux of 1011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{11}$$\end{document}. The ratio of 14N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{14}N$$\end{document}/12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}C$$\end{document} and/or 16O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{16}O$$\end{document}/12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}C$$\end{document} for illicit drugs inspected are then extracted using the element ratio approach. It is found that the present results of simulations are in good agreement with the theoretical calculations. The feasibility to detect the illicit drugs, inside the 15-mm-thick iron shielding, or surrounded by thin benign materials, is also discussed. It is indicated that, using the state-of-the-art γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray source of high intensity and energy-tunability, the proposed method has a great potential for identifying drugs and explosives in a realistic measurement time.
引用
收藏
相关论文
共 50 条
  • [41] NUCLEAR RESONANCE FLUORESCENCE MEASUREMENTS WITH PULSED BEAM TECHNIQUES
    SKORKA, SJ
    NUCLEAR INSTRUMENTS & METHODS, 1964, 28 (01): : 192 - 197
  • [42] NUCLEAR-RESONANCE FLUORESCENCE IN NE-22
    BERG, UEP
    WIENHARD, K
    NUCLEAR PHYSICS A, 1979, 318 (03) : 453 - 460
  • [43] NUCLEAR-RESONANCE FLUORESCENCE IN ZR-91
    METZGER, FR
    PHYSICAL REVIEW C, 1977, 16 (02): : 597 - 602
  • [44] NUCLEAR-RESONANCE FLUORESCENCE IN ZR-91
    METZGER, FR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 1002 - 1002
  • [45] NUCLEAR-RESONANCE FLUORESCENCE OF S-32
    PARROTT, MJ
    WESSELS, B
    MILLER, WC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (04): : 573 - 573
  • [46] NUCLEAR-RESONANCE FLUORESCENCE STUDIES USING BREMSSTRAHLUNG
    COOPE, DF
    CANNELL, LE
    BRUSSEL, MK
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (04): : 497 - 497
  • [47] NUCLEAR-RESONANCE FLUORESCENCE IN XE-130
    KENEALY, PF
    BEARD, GB
    PARSONS, K
    PHYSICAL REVIEW C, 1970, 2 (05): : 2009 - +
  • [48] Nondestructive identification of isotopes using nuclear resonance fluorescence
    Shizuma, Toshiyuki
    Hayakawa, Takehito
    Hajima, Ryoichi
    Kikuzawa, Nobuhiro
    Ohgaki, Hideaki
    Toyokawa, Hiroyuki
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (01):
  • [49] NUCLEAR RESONANCE-FLUORESCENCE ANALYZER OF ORES AND SURFACES
    PALATHINGAL, JC
    AIP CONFERENCE PROCEEDINGS, 1985, (125) : 847 - 850
  • [50] NUCLEAR-RESONANCE FLUORESCENCE IN BA-138
    SWANN, CP
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (04): : 630 - 630