Nuclear resonance fluorescence drug inspection

被引:0
|
作者
Haoyang Lan
Tan Song
Xingde Huang
Shengqiang Zhao
Jianliang Zhou
Zhichao Zhu
Yi Xu
Dimiter L. Balabanski
Wen Luo
机构
[1] University of South China,School of Nuclear Science and Technology
[2] Extreme Light Infrastructure Nuclear Physics (ELI-NP),National Exemplary Base for International Sci and Tech. Collaboration of Nuclear Energy and Nuclear Safety
[3] Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH),undefined
[4] University of South China,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There is an increasing challenge to prevent illicit drug smuggling across borders and seaports. However, the existing techniques in-and-of-themselves are not sufficient to identify the illicit drugs rapidly and accurately. In the present study, combining nuclear resonance fluorescence (NRF) spectroscopy and the element (or isotope) ratio approach, we present a novel inspection method that can simultaneously reveal the elemental (or isotopic) composition of the illicit drugs, such as widely abused methamphetamine, cocaine, heroin, ketamine and morphine. In the NRF spectroscopy, the nuclei are excited by the induced photon beam, and measurement of the characteristic energies of the emitted γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} rays from the distinct energy levels in the excited nuclei provides “fingerprints” of the interested elements in the illicit drugs. The element ratio approach is further used to identify drug elemental composition in principle. Monte Carlo simulations show that four NRF peaks from the nuclei 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}$$\end{document}C, 14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{14}$$\end{document}N and 16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{16}$$\end{document}O can be detected with high significance of 7−24σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} using an induced photon beam flux of 1011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{11}$$\end{document}. The ratio of 14N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{14}N$$\end{document}/12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}C$$\end{document} and/or 16O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{16}O$$\end{document}/12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}C$$\end{document} for illicit drugs inspected are then extracted using the element ratio approach. It is found that the present results of simulations are in good agreement with the theoretical calculations. The feasibility to detect the illicit drugs, inside the 15-mm-thick iron shielding, or surrounded by thin benign materials, is also discussed. It is indicated that, using the state-of-the-art γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray source of high intensity and energy-tunability, the proposed method has a great potential for identifying drugs and explosives in a realistic measurement time.
引用
收藏
相关论文
共 50 条
  • [31] Nuclear Resonance Fluorescence and Isotopic Mapping of Containers
    Johnson, Micah S.
    McNabb, Dennis P.
    APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY, 2009, 1099 : 697 - 699
  • [32] NUCLEAR RESONANCE FLUORESCENCE IN CU65
    BEARD, GB
    PHYSICAL REVIEW B, 1964, 135 (3B): : B577 - &
  • [33] NUCLEAR RESONANCE FLUORESCENCE IN CE-140
    OFER, S
    SCHWARZSCHILD, A
    PHYSICAL REVIEW, 1959, 116 (03): : 725 - 729
  • [34] NUCLEAR RESONANCE FLUORESCENCE AND CHEMISTRY OF COLD ATOMS
    ADLOFF, JP
    RADIOCHIMICA ACTA, 1971, 15 (03) : 135 - &
  • [35] Performance of LaBr3(Ce) array detector system for Non-destructive inspection of Special Nuclear Material by using Nuclear Resonance Fluorescence
    Omer, Mohamed
    Ohgaki, Hideaki
    Negm, Hani
    Daito, Izuru
    Hori, Toshitada
    Kii, Toshiteru
    Zen, Heishun
    Hajima, Ryoichi
    Hayakawa, Takehito
    Shizuma, Toshiyuki
    Fujiwara, Mamoru
    2013 IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGIES FOR HOMELAND SECURITY (HST), 2013, : 671 - 676
  • [36] Fast inspection of fruits using nuclear magnetic resonance spectroscopy
    Wu, Mengjian
    Cai, Honghao
    Cui, Xiaohong
    Wei, Zhiliang
    Ke, Hanping
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2020, 67 (10) : 1794 - 1799
  • [37] Simulations of nuclear resonance fluorescence in GEANT4
    Lakshmanan, Manu N.
    Harrawood, Brian P.
    Rusev, Gencho
    Agasthya, Greeshma A.
    Kapadia, Anuj J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 763 : 89 - 96
  • [38] EFFECT OF NUCLEAR SPIN ON POLARIZATION RATIO OF RESONANCE FLUORESCENCE
    MADDEN, PA
    CHEMICAL PHYSICS LETTERS, 1975, 35 (04) : 521 - 524
  • [39] NUCLEAR-RESONANCE FLUORESCENCE IN SM-144
    METZGER, FR
    PHYSICAL REVIEW C, 1978, 17 (03): : 939 - 943
  • [40] Nuclear Resonance Fluorescence Using Different Photon Sources
    Warren, Glen
    Caggiano, Joseph
    Ahmed, Mohammad
    Bertozzi, William
    Hunt, Alan
    Johnson, James
    Jones, James
    Korbly, Stephen
    Reedy, Edward
    Seipel, Heather
    Stave, Sean
    Watson, Scott
    Weller, Henry
    2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, 2009, : 2593 - +