Nuclear resonance fluorescence drug inspection

被引:0
|
作者
Haoyang Lan
Tan Song
Xingde Huang
Shengqiang Zhao
Jianliang Zhou
Zhichao Zhu
Yi Xu
Dimiter L. Balabanski
Wen Luo
机构
[1] University of South China,School of Nuclear Science and Technology
[2] Extreme Light Infrastructure Nuclear Physics (ELI-NP),National Exemplary Base for International Sci and Tech. Collaboration of Nuclear Energy and Nuclear Safety
[3] Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH),undefined
[4] University of South China,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There is an increasing challenge to prevent illicit drug smuggling across borders and seaports. However, the existing techniques in-and-of-themselves are not sufficient to identify the illicit drugs rapidly and accurately. In the present study, combining nuclear resonance fluorescence (NRF) spectroscopy and the element (or isotope) ratio approach, we present a novel inspection method that can simultaneously reveal the elemental (or isotopic) composition of the illicit drugs, such as widely abused methamphetamine, cocaine, heroin, ketamine and morphine. In the NRF spectroscopy, the nuclei are excited by the induced photon beam, and measurement of the characteristic energies of the emitted γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} rays from the distinct energy levels in the excited nuclei provides “fingerprints” of the interested elements in the illicit drugs. The element ratio approach is further used to identify drug elemental composition in principle. Monte Carlo simulations show that four NRF peaks from the nuclei 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}$$\end{document}C, 14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{14}$$\end{document}N and 16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{16}$$\end{document}O can be detected with high significance of 7−24σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} using an induced photon beam flux of 1011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{11}$$\end{document}. The ratio of 14N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{14}N$$\end{document}/12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}C$$\end{document} and/or 16O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{16}O$$\end{document}/12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}C$$\end{document} for illicit drugs inspected are then extracted using the element ratio approach. It is found that the present results of simulations are in good agreement with the theoretical calculations. The feasibility to detect the illicit drugs, inside the 15-mm-thick iron shielding, or surrounded by thin benign materials, is also discussed. It is indicated that, using the state-of-the-art γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray source of high intensity and energy-tunability, the proposed method has a great potential for identifying drugs and explosives in a realistic measurement time.
引用
收藏
相关论文
共 50 条
  • [21] NUCLEAR RESONANCE FLUORESCENCE IN KR82
    BEARD, GB
    PHYSICAL REVIEW, 1966, 145 (03): : 862 - &
  • [22] NUCLEAR RESONANCE FLUORESCENCE IN TE122
    PALATHINGAL, JC
    PHYSICAL REVIEW B, 1964, 136 (6B) : 1553 - +
  • [23] Development of general nuclear resonance fluorescence model
    Ogawa, Tatsuhiko
    Hashimoto, Shintaro
    Sato, Tatsuhiko
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2016, 53 (11) : 1766 - 1773
  • [24] NUCLEAR RESONANCE FLUORESCENCE IN IR193
    METZGER, FR
    PHYSICAL REVIEW, 1967, 161 (04): : 1249 - &
  • [25] NUCLEAR RESONANCE FLUORESCENCE IN AU-197
    NAGLE, D
    CRAIG, PP
    DASH, JG
    REISWIG, RR
    PHYSICAL REVIEW LETTERS, 1960, 4 (05) : 237 - 239
  • [26] Nuclear resonance fluorescence in 240Pu
    Quiter, B. J.
    Laplace, T.
    Ludewigt, B. A.
    Ambers, S. D.
    Goldblum, B. L.
    Korbly, S.
    Hicks, C.
    Wilson, C.
    PHYSICAL REVIEW C, 2012, 86 (03):
  • [27] TIME MODULATION OF RECOILLESS NUCLEAR RESONANCE FLUORESCENCE
    MUZIKAR, C
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1964, 14 (02) : 89 - &
  • [28] Detecting clandestine material with nuclear resonance fluorescence
    Pruet, J.
    McNabb, D. P.
    Hagmann, C. A.
    Hartemann, F. V.
    Barty, C. P. J.
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (12)
  • [29] Investigation of nuclear structure by resonance fluorescence scattering
    Kneissl, U
    Pitz, HH
    Zilges, A
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 37, 1996, 37 : 349 - 433
  • [30] Nuclear Resonance Fluorescence of 235U
    Warren, Glen A.
    Caggiano, Joseph A.
    Hensley, Walter K.
    Lepel, Elwood
    Pratt, Sharon
    Bertozzi, William
    Korbly, Stephen E.
    Ledoux, Robert J.
    Park, William H.
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 914 - 917