Nuclear resonance fluorescence drug inspection

被引:0
|
作者
Haoyang Lan
Tan Song
Xingde Huang
Shengqiang Zhao
Jianliang Zhou
Zhichao Zhu
Yi Xu
Dimiter L. Balabanski
Wen Luo
机构
[1] University of South China,School of Nuclear Science and Technology
[2] Extreme Light Infrastructure Nuclear Physics (ELI-NP),National Exemplary Base for International Sci and Tech. Collaboration of Nuclear Energy and Nuclear Safety
[3] Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH),undefined
[4] University of South China,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There is an increasing challenge to prevent illicit drug smuggling across borders and seaports. However, the existing techniques in-and-of-themselves are not sufficient to identify the illicit drugs rapidly and accurately. In the present study, combining nuclear resonance fluorescence (NRF) spectroscopy and the element (or isotope) ratio approach, we present a novel inspection method that can simultaneously reveal the elemental (or isotopic) composition of the illicit drugs, such as widely abused methamphetamine, cocaine, heroin, ketamine and morphine. In the NRF spectroscopy, the nuclei are excited by the induced photon beam, and measurement of the characteristic energies of the emitted γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} rays from the distinct energy levels in the excited nuclei provides “fingerprints” of the interested elements in the illicit drugs. The element ratio approach is further used to identify drug elemental composition in principle. Monte Carlo simulations show that four NRF peaks from the nuclei 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}$$\end{document}C, 14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{14}$$\end{document}N and 16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{16}$$\end{document}O can be detected with high significance of 7−24σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} using an induced photon beam flux of 1011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{11}$$\end{document}. The ratio of 14N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{14}N$$\end{document}/12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}C$$\end{document} and/or 16O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{16}O$$\end{document}/12C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}C$$\end{document} for illicit drugs inspected are then extracted using the element ratio approach. It is found that the present results of simulations are in good agreement with the theoretical calculations. The feasibility to detect the illicit drugs, inside the 15-mm-thick iron shielding, or surrounded by thin benign materials, is also discussed. It is indicated that, using the state-of-the-art γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray source of high intensity and energy-tunability, the proposed method has a great potential for identifying drugs and explosives in a realistic measurement time.
引用
收藏
相关论文
共 50 条
  • [1] Nuclear resonance fluorescence drug inspection
    Lan, Haoyang
    Song, Tan
    Huang, Xingde
    Zhao, Shengqiang
    Zhou, Jianliang
    Zhu, Zhichao
    Xu, Yi
    Balabanski, Dimiter L.
    Luo, Wen
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Nuclear resonance fluorescence imaging in non-intrusive cargo inspection
    Bertozzi, W
    Ledoux, RJ
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 241 (1-4): : 820 - 825
  • [3] Applications of Nuclear Resonance Fluorescence
    Warren, Glen A.
    Detwiler, Rebecca S.
    Peplowski, Patrick N.
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 534 - 541
  • [4] NOTE ON NUCLEAR RESONANCE FLUORESCENCE
    FRIEDLAND, E
    PHYSICS LETTERS, 1965, 14 (02): : 120 - +
  • [5] Study on Detector Geometry for Active Non-destructive Inspection System of SNMs by Nuclear Resonance Fluorescence
    Negm, Hani Hussein
    Ohgaki, Hideaki
    Daito, Izuru
    Hori, Toshitada
    Kii, Toshiteru
    Zen, Heishun
    Hajima, Ryoichi
    Hayakawa, Takehito
    Shizuma, Toshiyuki
    Fujimoto, Shinya
    2015 IEEE INTERNATIONAL SYMPOSIUM ON TECHNOLOGIES FOR HOMELAND SECURITY (HST), 2015,
  • [6] Validating resonance properties using nuclear resonance fluorescence
    Angell, C. T.
    Hajima, R.
    Hayakawa, T.
    Shizuma, T.
    Karwowski, H. J.
    Silano, J.
    PHYSICAL REVIEW C, 2014, 90 (05):
  • [7] ON THE INTERPRETATION OF NUCLEAR RESONANCE FLUORESCENCE EXPERIMENTS
    JACKSON, JD
    CANADIAN JOURNAL OF PHYSICS, 1955, 33 (09) : 575 - 576
  • [8] Nuclear Resonance Fluorescence for Materials Assay
    Quiter, Brian J.
    Ludewigt, Bernhard A.
    Mozin, Vladimir V.
    Prussin, Stanley G.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (02) : 400 - 403
  • [9] NUCLEAR RESONANCE FLUORESCENCE IN A-75
    METZGER, FR
    PHYSICAL REVIEW, 1958, 110 (01): : 123 - 127
  • [10] Potential Applications of Nuclear Resonance Fluorescence
    Warren, Glen
    Caggiano, Jac
    Peplowski, Patrick
    INTERNATIONAL CONFERENCE ON APPLICATIONS OF NUCLEAR TECHNIQUES, 2009, 1194 : 106 - 119