Ground State Solutions for Kirchhoff–Schrödinger–Poisson System with Sign-Changing Potentials

被引:2
作者
Ying Wang
Ziheng Zhang
机构
[1] TianGong University,School of Mathematical Sciences
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2021年 / 44卷
关键词
Kirchhoff–Schrödinger–Poisson system; Ground state solution; Nehari manifold; Sign-changing potential; 35A15; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the following Kirchhoff–Schrödinger–Poisson system with pure power nonlinearity -(a+b∫R3|∇u|2dx)Δu+V(x)u+K(x)ϕu=h(x)|u|p-1u,x∈R3,-Δϕ=K(x)u2,x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\Bigl (a+b \displaystyle \int _{\mathbb {R}^3}|\nabla u|^2{\text {d}}x\Bigr )\Delta u+V(x) u+K(x) \phi u= h(x)|u|^{p-1}u, &{}x\in \mathbb {R}^3, \\ -\Delta \phi =K(x)u^2, &{}x\in \mathbb {R}^3, \end{array} \right. \end{aligned}$$\end{document}where a, b are positive constants, and 3<p<5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3<p<5$$\end{document}. Under some proper assumptions on the potentials V, K and h, not requiring nonnegative property, we find a ground state solution for the above problem with the help of Nehari manifold.
引用
收藏
页码:2319 / 2333
页数:14
相关论文
共 57 条
[1]  
Ambrosetti A(2008)On Schrödinger–Poisson systems Milan J. Math. 76 257-274
[2]  
Ambrosetti A(2008)Multiple bound states for the Schrödinger–Poisson problem Commun. Contemp. Math. 10 391-404
[3]  
Ruiz D(2012)The elliptic Kirchhoff equation in Differ. Integral Equ. 25 543-554
[4]  
Azzollini A(2018) perturbed by a local nonlinearity Nonlinear Anal. Real World Appl. 39 142-156
[5]  
Batista AM(2018)Positive and nodal solutions for a nonlinear Schrödinger–Poisson system with sign-changing potentials Milan J. Math. 86 1-14
[6]  
Furtado MF(2016)Solutions for a Schrödinger–Kirchhoff Equation with indefinite potentials Commun. Pure Appl. Anal. 15 429-444
[7]  
Batista AM(1998)Schrödinger–Kirchhoff–Poisson type systems Topol. Methods Nonlinear Anal. 11 283-293
[8]  
Furtado MF(2010)An eigenvalue problem for the Schrödinger–Maxwell equations J. Differ. Equ. 248 521-543
[9]  
Batkam CJ(2014)Positive solutions for some non-autonomous Schrödinger–Poisson systems Arch. Ration. Mech. Anal. 213 931-979
[10]  
Santos Júnior JR(2008)Existence and concentration result for the Kirchhoff type equations with general nonlinearities Adv. Nonlinear Stud. 8 353-373