Spectral Conditions for Connectivity, Toughness and perfect k-Matchings of Regular Graphs

被引:0
作者
Wenqian Zhang
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Eigenvalue; Connectivity; Toughness; Perfect ; -matching; 05C40; 05C42; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
The study of the relationships between the eigenvalues of a graph and its structural parameters is a central topic in spectral graph theory. In this paper, we give some new spectral conditions for the connectivity, toughness and perfect k-matchings of regular graphs. Our results extend or improve the previous related ones.
引用
收藏
相关论文
共 25 条
[1]  
Alon N(1995)Tough Ramsey graphs without short cycles J. Algebraic Combin. 4 189-195
[2]  
Brouwer AE(1995)Toughness and spectrum of a graph Linear Algebra Appl. 226 267-271
[3]  
Brouwer AE(2005)Eigenvalues and perfect matchings Linear Algebra Appl. 395 155-162
[4]  
Haemers WH(2009)Matchings in regular graphs from eigenvalues J. Combin. Theory Ser. B 99 287-297
[5]  
Cioabă SM(2010)Eigenvalues and edge-connectivity of regular graphs Linear Algebra Appl. 432 458-470
[6]  
Gregory D(2016)Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs Czech. Math. J. 66 913-924
[7]  
Haemers WH(2014)The spectrum and toughness of regular graphs Discrete Appl. Math. 176 43-52
[8]  
Cioabă SM(1973)Algebraic connectivity of graphs Czech. Math. J. 23 298-305
[9]  
Cioabă SM(2021)Toughness in pseudo-random graphs Eu. J. Combin. 92 948-952
[10]  
Gu X(2021)A proof of Brouwers toughness conjecture SIAM J. Discrete Math. 35 72-88