Hyperbolic systems of conservation laws with Lipschitz continuous flux-functions: The Riemann problem

被引:0
作者
Joaquim Correia
Philippe G. LeFloch
Mai Duc Thanh
机构
[1] Universidade Técnica de Lisboa,Instituto Superior Técnico
[2] Ecole Polytechnique,Centre de Mathématiques Appliquées Centre National de la Recherche Scientifique U.M.R. 7641
来源
Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society | 2001年 / 32卷
关键词
hyperbolic conservation law; entropy solution; Riemann problem; Lipschitz continuous flux; multivalued representative; Primary: 35L65; Secondary: 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
For strictly hyperbolic systems of conservation laws with Lipschitz continuous flux-functions we generalize Lax's genuine nonlinearity condition and shock admissibility inequalities and we solve the Riemann problem when the left- and right-hand initial data are sufficiently close. Our approach is based on the concept of multivalued representatives ofL∞ functions and a generalized calculus for Lipschitz continuous mappings. Several interesting features arising with Lipschitz continuous flux-functions come to light from our analysis.
引用
收藏
页码:271 / 301
页数:30
相关论文
共 5 条
[1]  
Dafermos C.M.(1977)Generalized characteristics and the structure of solutions of hyperbolic conservation laws Indiana Univ. Math. J. 26 1097-1119
[2]  
Dal Maso G.(1995)Definition and weak stability of nonconservative products J. Math. Pures Appl. 74 483-548
[3]  
LeFloch P.G.(1993)Propagating phase boundaries: Formulation of the problem and existence via the Glimm method Arch. Rational Mech. Anal. 123 153-197
[4]  
Murat F.(undefined)undefined undefined undefined undefined-undefined
[5]  
LeFloch P.G.(undefined)undefined undefined undefined undefined-undefined