Affine Hypersurfaces with Parallel Shape Operator

被引:0
作者
Ying Lü
机构
[1] Xiamen University,School of Mathematical Science
来源
Results in Mathematics | 2017年 / 72卷
关键词
Blaschke hypersurface; improper affine hypersphere; Monge–Ampère equation; parallel shape operator; 53A15;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the following: a relative hypersurface with parallel shape operator is either a relative hypersphere, or it is affinely equivalent to an example constructed by Th. Binder. Furthermore, based on Binder’s example, we give another simple and more explicit example; this way we improve the classification and show that it is completely determined by functions κ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (t)$$\end{document} and C(vi;t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(v_i;t)$$\end{document}, the latter being solutions of certain Monge–Ampère equations. Our example geometrically is constructed from a plane curve and a family of relative hyperspheres. In case of an affine sphere with Blaschke geometry we show that our classification can be considered as a construction coming from a plane curve together with a family of improper affine hyperspheres. Especially in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^4$$\end{document}, this construction is determined by only three functions of a single variable.
引用
收藏
页码:181 / 192
页数:11
相关论文
共 14 条
  • [1] Binder T(2004)On relative hypersurfaces with parallel shape operator Results Math. 46 227-236
  • [2] Calabi E(1958)Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens Mich. Math. J. 5 105-126
  • [3] Dillen F(1988)Locally symmetric complex affine hypersurfaces J. Geom. 33 27-38
  • [4] Dillen F(2004)Affine surfaces with symmetric shape operator Soochow J. Math. 30 351-354
  • [5] Lu Y(2005)The space of solutions to the Hessian one equation in the finitely punctured plane J. Math. Pure Appl. 84 1744-1757
  • [6] Gálvez JA(1992)Affine surfaces with parallel shape operators Ann. Pol. Math. 56 179-186
  • [7] Martínez A(1954)Über die Lösungen der Differentialgleichung Math. Ann. 127 130-134
  • [8] Mira P(1955)Harmonische Abbildungen und die Differentialgleichung Math. Ann. 129 330-344
  • [9] Jelonek W(2011)Blaschke hypersurfaces with symmetric shape operator Acta Math. Sin. 27 1655-1662
  • [10] Jörgens K(2013)Singularities of improper affine maps and their Hessian equation J. Math. Anal. Appl. 405 183-190