Performance study and analysis of MIMO visible light communication-based V2V systems

被引:0
作者
Selma Yahia
Yassine Meraihi
Souad Refas
Asma Benmessaoud Gabis
Amar Ramdane-Cherif
Hossien B. Eldeeb
机构
[1] University of M’Hamed Bougara Boumerdes,LIST Laboratory
[2] Ecole nationale Supérieure d’Informatique,Laboratoire des Méthodes de Conception des Systèmes
[3] University of Versailles St-Quentin-en-Yvelines,LISV Laboratory
[4] Özyeğin University,Department of Electrical and Electronics Engineering
来源
Optical and Quantum Electronics | 2022年 / 54卷
关键词
Vehicular communications; Vehicle-to-vehicle; Visible light communication; Multiple-input multiple-output;
D O I
暂无
中图分类号
学科分类号
摘要
Vehicular Visible Light Communication (VLC) has recently attracted much interest from researchers and scientists. This technology enables the connectivity between the vehicles and the infrastructures along the road utilizing the Lighting-Emitting-Diodes based vehicle HeadLights (HLs) and TailLights (TLs) as wireless transmitters. This paper investigates the performance of a Vehicle-to-Vehicle VLC system using a Multiple-Input Multiple-Output (MIMO) scheme. Specifically, we establish the MIMO transmission system by using the two HLs of the source vehicle as wireless transmitters and multiple receivers (RXs) installed at the rear of the destination vehicle as wireless receivers. We consider different numbers of RXs, which result in various MIMO configurations, i.e., 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document}, 2×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 3$$\end{document}, and 2×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 4$$\end{document}. We conduct a channel modeling study based on the non-sequential ray-tracing capabilities of the OpticStudio software to obtain the optical channel gain, considering the possibility of both horizontal and vertical displacement between vehicles. We then explore the contribution of each RX in the total received power. In addition, we investigate the effect of weather conditions, modulation orders, and artificial light sources on the bit error rate (BER) performance of the considered MIMO configurations. The obtained results demonstrate that deploying the MIMO with higher orders can significantly enhance the system performance, particularly when there is a lateral shift between the two cars. It has been drawn from our results that the required SNR to achieve a BER of 10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-4}$$\end{document} reduces by 6 dB when 2×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 4$$\end{document} MIMO configuration is deployed compared to the 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} MIMO configuration.
引用
收藏
相关论文
共 56 条
[1]  
Al-Nahhal M(2020)Flexible generalized spatial modulation for visible light communications IEEE Trans. Veh. Technol. 70 1041-1045
[2]  
Basar E(2021)Towards an IEEE 802.11 compliant system for outdoor vehicular visible light communications IEEE Trans. Veh. Technol. 70 5749-5761
[3]  
Uysal M(2014)Design and analysis of an angular-segmented full-mobility visible light communications receiver Trans. Emerg. Telecommun. Technol. 25 591-599
[4]  
Amjad MS(2017)Current challenges for visible light communications usage in vehicle applications: a survey IEEE Commun. Surv. Tutor. 19 2681-2703
[5]  
Tebruegge C(2011)Interference rejection using filter-based sensor array in vlc systems IEEE Sens. J. 12 1025-1032
[6]  
Memedi A(2012)Traffic light to vehicle visible light communication channel characterization Appl. Opt. 51 6594-6605
[7]  
Burton A(2021)Distributed MIMO for Li-Fi: channel measurements, ray tracing and throughput analysis IEEE Photon Technol. Lett. 33 916-919
[8]  
Ghassemlooy Z(2021)Visible light communication for connected vehicles: How to achieve the omnidirectional coverage? IEEE Access 9 103885-103905
[9]  
Rajbhandari S(2022)Infrastructure-to-vehicle visible light communications: channel modelling and performance analysis IEEE Trans. Veh. Technol. 71 2240-2250
[10]  
Căilean AM(2020)Channel modelling and performance limits of vehicular visible light communication systems IEEE Trans. Veh. Technol. 69 6891-6901