New Quantum Invariants of Planar Knotoids

被引:0
作者
Wout Moltmaker
Roland van der Veen
机构
[1] University of Amsterdam,Korteweg
[2] University of Groningen,de Vries Institute
来源
Communications in Mathematical Physics | 2023年 / 402卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we discuss the applications of knotoids to modelling knots in open curves and produce new knotoid invariants. We show how invariants of knotoids generally give rise to well-behaved measures of how much an open curve is knotted. We define biframed planar knotoids, and construct new invariants of these objects that can be computed in polynomial time. As an application of these invariants we improve the classification of planar knotoids with up to five crossings by distinguishing two pairs of prime knotoids that were conjectured to be distinct by Goundaroulis et al.
引用
收藏
页码:695 / 722
页数:27
相关论文
共 28 条
[1]  
Cox MA(2008)Hydrocarbon links in an octet truss J. Math. Chem. 43 874-891
[2]  
Hughes TS(2018)Knoto-id: a tool to study the entanglement of open protein chains using the concept of knotoids Bioinformatics 34 3402-3404
[3]  
Ellis-Monaghan JA(1996)Topological interactions in model polymer networks Phys. Rev. E 53 R37-604
[4]  
Mondanaro KR(2021)An invariant for colored bonded knots Stud. Appl. Math. 146 586-1214
[5]  
Dorier J(2017)Topological models for open-knotted protein chains using the concepts of knotoids and bonded knotoids Polymers 9 444-223
[6]  
Goundaroulis D(2006)Bottom tangles and universal invariants Algebraic Geom. Topol. 6 1113-undefined
[7]  
Benedetti F(2019)Rail knotoids J. Knot Theory Ramif. 28 1940019-undefined
[8]  
Stasiak A(2020)DNA origami and unknotted a-trails in torus graphs J. Knot Theory Ramif. 29 2050041-undefined
[9]  
Everaers R(2012)Knotoids Osaka J. Math. 49 195-undefined
[10]  
Kremer K(undefined)undefined undefined undefined undefined-undefined