On the Malmquist theorem for solutions of differential equations in the neighborhood of an isolated singular point

被引:0
作者
Mokhon'ko A.A. [1 ]
机构
[1] Shevchenko Kiev National University, Kiev
关键词
Differential Equation; Singular Point; Meromorphic Solution; Malmquist Theorem;
D O I
10.1007/s11253-005-0214-7
中图分类号
学科分类号
摘要
The statement of the Malmquist theorem (1913) about the growth of meromorphic solutions of the differential equation f′ = P(z,f)/Q(z,f), where P(z, f) and Q(z, f) are polynomials in all variables, is proved in the case of solutions with isolated singular point at infinity. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:610 / 620
页数:10
相关论文
共 13 条
[1]  
Gol'dberg A.A., Ostrovskii I.V., Distribution of Values of Meromorphic Functions [in Russian], Nauka, Moscow, (1970)
[2]  
Malmquist J., Sur les fonctions á un nombre fini de branches définies par les équations différentielles du premier ordre, Acta Math., 36, pp. 297-343, (1913)
[3]  
Golubev V.V., Lectures on the Analytic Theory of Differential Equations [in Russian], (1950)
[4]  
Yosida K., A generalization of a Malmquist's theorem, Jpn. J. Math., 9, pp. 239-256, (1933)
[5]  
Gol'dberg A.A., Levin B.Ya., Ostrovskii I.V., Entire and meromorphic functions, VINITI Series in Contemporary Problems of Mathematics, Fundamental Trends [in Russian], 85, pp. 5-186, (1991)
[6]  
Laine I., Nevanlinna Theory and Complex Differential Equations, (1993)
[7]  
Van Der Waerden B.L., Algebra [Russian Translation], (1979)
[8]  
Mokhon'ko A.Z., Malmquist theorem for solutions of differential equations in a neighborhood of a logarithmic singular point, Ukr. Mat. Zh., 56, 4, pp. 476-483, (2004)
[9]  
Valiron G., Sur la dérivée des fonctions algébroides, Bull. Soc. Math. France, 59, 1-2, pp. 17-39, (1931)
[10]  
Markushevich A.I., Theory of Analytic Functions [in Russian], 2, (1968)