Theory and phenomenology for a variety of classical and quantum phase transitions

被引:0
|
作者
N. H. March
Z. D. Zhang
机构
[1] Donostia International Physics Centre,Department of Physics
[2] University of Antwerp,Shenyang National Laboratory for Materials Science, Institute of Metal Research
[3] Abdus Salam International Centre for Theoretical Physics,undefined
[4] Oxford University,undefined
[5] Chinese Academy of Sciences,undefined
来源
Journal of Mathematical Chemistry | 2013年 / 51卷
关键词
Ising model; Anderson localization; Metal-insulator transitions; Classical phase transitions; Quantum phase transitions; Laughlin electron liquid; Wigner electron solid;
D O I
暂无
中图分类号
学科分类号
摘要
In this review, we first introduce recent progress in the mathematical structure of the three-dimensional Ising model, from the points of view of topologic, algebraic and geometric aspects. Then we discuss in turn Anderson localization due to disorder and then first- and second-order metal-insulator transitions, depending on electron correlation, with and without a magnetic field. Finally, we make intimate contact with the phase diagram showing the equilibrium between low temperature regimes of the magnetically induced Wigner electron solid and the so-called Laughlin electron liquid in the two-dimensional case.
引用
收藏
页码:1694 / 1711
页数:17
相关论文
共 50 条
  • [41] Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization
    Tobias J. Osborne
    Michael A. Nielsen
    Quantum Information Processing, 2002, 1 : 45 - 53
  • [42] Imaginary-temperature zeros for quantum phase transitions
    Liu, Jinghu
    Yin, Shuai
    Chen, Li
    PHYSICAL REVIEW B, 2024, 110 (13)
  • [43] Entanglement scaling at first order quantum phase transitions
    Yuste, A.
    Cartwright, C.
    De Chiara, G.
    Sanpera, A.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [44] Quantum phase transitions in frustrated ferro- and ferrimagnets
    Richter, J
    Schollwöck, U
    Ivanov, NB
    PHYSICA B, 2000, 281 (281): : 845 - 847
  • [45] Lie algebra symmetries and quantum phase transitions in nuclei
    Kota, V. K. B.
    PRAMANA-JOURNAL OF PHYSICS, 2014, 82 (04): : 743 - 755
  • [46] Phase transitions in a programmable quantum spin glass simulator
    Harris, R.
    Sato, Y.
    Berkley, A. J.
    Reis, M.
    Altomare, F.
    Amin, M. H.
    Boothby, K.
    Bunyk, P.
    Deng, C.
    Enderud, C.
    Huang, S.
    Hoskinson, E.
    Johnson, M. W.
    Ladizinsky, E.
    Ladizinsky, N.
    Lanting, T.
    Li, R.
    Medina, T.
    Molavi, R.
    Neufeld, R.
    Oh, T.
    Pavlov, I.
    Perminov, I.
    Poulin-Lamarre, G.
    Rich, C.
    Smirnov, A.
    Swenson, L.
    Tsai, N.
    Volkmann, M.
    Whittaker, J.
    Yao, J.
    SCIENCE, 2018, 361 (6398) : 162 - 165
  • [47] Quantum phase transitions in bosonic heteronuclear pairing Hamiltonians
    Hohenadler, M.
    Silver, A. O.
    Bhaseen, M. J.
    Simons, B. D.
    PHYSICAL REVIEW A, 2010, 82 (01)
  • [48] Phase transitions and gaps in quantum random energy models
    Presilla, Carlo
    Ostilli, Massimo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 515 : 57 - 64
  • [49] Geometry, quantum correlations, and phase transitions in the ?-atomic configuration
    Castanos, O.
    Cordero, S.
    Lopez-Pena, R.
    Nahmad-Achar, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (48)
  • [50] Spin Peierls Quantum Phase Transitions in Coulomb Crystals
    Bermudez, A.
    Plenio, M. B.
    PHYSICAL REVIEW LETTERS, 2012, 109 (01)