Theory and phenomenology for a variety of classical and quantum phase transitions

被引:0
|
作者
N. H. March
Z. D. Zhang
机构
[1] Donostia International Physics Centre,Department of Physics
[2] University of Antwerp,Shenyang National Laboratory for Materials Science, Institute of Metal Research
[3] Abdus Salam International Centre for Theoretical Physics,undefined
[4] Oxford University,undefined
[5] Chinese Academy of Sciences,undefined
来源
Journal of Mathematical Chemistry | 2013年 / 51卷
关键词
Ising model; Anderson localization; Metal-insulator transitions; Classical phase transitions; Quantum phase transitions; Laughlin electron liquid; Wigner electron solid;
D O I
暂无
中图分类号
学科分类号
摘要
In this review, we first introduce recent progress in the mathematical structure of the three-dimensional Ising model, from the points of view of topologic, algebraic and geometric aspects. Then we discuss in turn Anderson localization due to disorder and then first- and second-order metal-insulator transitions, depending on electron correlation, with and without a magnetic field. Finally, we make intimate contact with the phase diagram showing the equilibrium between low temperature regimes of the magnetically induced Wigner electron solid and the so-called Laughlin electron liquid in the two-dimensional case.
引用
收藏
页码:1694 / 1711
页数:17
相关论文
共 50 条
  • [31] Coherence susceptibility as a probe of quantum phase transitions
    Chen, Jin-Jun
    Cui, Jian
    Zhang, Yu-Ran
    Fan, Heng
    PHYSICAL REVIEW A, 2016, 94 (02)
  • [32] Quantum first-order phase transitions
    Continentino, MA
    Ferreira, AS
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 339 (3-4) : 461 - 468
  • [33] FINITE TEMPERATURE APPROACH TO QUANTUM PHASE TRANSITIONS
    Plastino, A.
    Curado, E. M. F.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (02): : 397 - 401
  • [34] Quantum phase transitions in coupled arrays of cavities
    Brandao, F. G. S. L.
    Hartmann, M. J.
    Plenio, M. B.
    COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 744 - 747
  • [35] Average quantum coherence and its use in probing quantum phase transitions
    Liu, Xin-Yu
    Hu, Ming-Liang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 609
  • [36] Berry phases, quantum phase transitions and Chern numbers
    Contreras, H. A.
    Reyes-Lega, A. F.
    PHYSICA B-CONDENSED MATTER, 2008, 403 (5-9) : 1301 - 1302
  • [37] Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization
    Osborne, Tobias J.
    Nielsen, Michael A.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 45 - 53
  • [38] Role of the tuning parameter at magnetic quantum phase transitions
    Fritsch, V.
    Stockert, O.
    Huang, C. -L.
    Bagrets, N.
    Kittler, W.
    Taubenheim, C.
    Pilawa, B.
    Woitschach, S.
    Huesges, Z.
    Lucas, S.
    Schneidewind, A.
    Grube, K.
    v Loehneysen, H.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (06) : 997 - 1019
  • [39] Quantum phase transitions of correlated electrons in two dimensions
    Sachdev, S
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 313 (1-2) : 252 - 283
  • [40] Holographic quantum phase transitions and interacting bulk scalars
    Chaturvedi, Pankaj
    Basu, Pallab
    PHYSICS LETTERS B, 2014, 739 : 162 - 166