On the Convergence of Sequences of Generalized Weighted Composition Operators on the Bloch Type Spaces

被引:0
作者
Samira Mehrangiz
Bahram Khani-Robati
机构
[1] Shiraz University,Department of Mathematics, College of Sciences
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2022年 / 46卷
关键词
Generalized weighted composition operators; -Bloch space; -Little ; -Bloch space; Weak operator convergence; Strong operator convergence; Uniform operator convergence;
D O I
暂无
中图分类号
学科分类号
摘要
Let βα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{\alpha }$$\end{document} be the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-Bloch space. In this paper convergence of a sequence of generalized weighted composition operators in the weak, strong and uniform operator topologies, in terms of the convergence of the corresponding sequences of inducing maps, is investigated. Let Cψ,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\psi ,\varphi }$$\end{document} be a bounded weighted composition operator and {Cψ,φn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C^n _{\psi , \varphi }\}$$\end{document} be the sequence of its powers. Under certain conditions on φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}, we investigate convergence of the induced weighted composition operators Cψ,φn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^n _{\psi , \varphi }$$\end{document}.
引用
收藏
页码:211 / 218
页数:7
相关论文
共 41 条
  • [1] Aouf MK(2020)Certain class of Bi-Bazilevic functions with bounded boundary rotation involving Salagean operator Constr Math Anal 3 139-149
  • [2] Seoudy T(2020)Growth estimates for analytic vector-valued functions in the unit ball having bounded L-index in joint variables Constr Math Anal 3 9-19
  • [3] Baksa V(1984)Cyclic vectors in the Dirichlet space Trans Amer Math Soc 285 269-304
  • [4] Bandura A(2018)Sequences of weighted composition operators on the Hardy-Hilbert space Complex Anal Oper Theory 12 1929-1943
  • [5] Skaskiv O(2005)Composition followed by differentiation between Bergman and Hardy spaces Rocky Mt J Math 35 843-855
  • [6] Brown L(2016)Essential norm of generalized weighted composition operators from the Bloch space into the Zygmund space J Inequalities Appl 123 1-16
  • [7] Shields AL(2007)Composition followed by differentiation between Bloch type spaces J Comput Ana Appl 9 195-205
  • [8] Gunatillake G(2009)Compositon followed by differentiation between Houst J Math 35 327-340
  • [9] Hibschweiler R(2010) and Appl Math Comput 217 3144-3154
  • [10] Portnoy N(2013)-Bloch spaces Arch Math 100 347-360