Nonparametric estimation of the ROC curve based on smoothed empirical distribution functions

被引:0
作者
Alicja Jokiel-Rokita
Michał Pulit
机构
[1] Wrocław University of Technology,Institute of Mathematics and Computer Science
来源
Statistics and Computing | 2013年 / 23卷
关键词
Receiver operating characteristic (ROC) curve; Empirical distribution function; Nonparametric estimation;
D O I
暂无
中图分类号
学科分类号
摘要
The receiver operating characteristic (ROC) curve is a graphical representation of the relationship between false positive and true positive rates. It is a widely used statistical tool for describing the accuracy of a diagnostic test. In this paper we propose a new nonparametric ROC curve estimator based on the smoothed empirical distribution functions. We prove its strong consistency and perform a simulation study to compare it with some other popular nonparametric estimators of the ROC curve. We also apply the proposed method to a real data set.
引用
收藏
页码:703 / 712
页数:9
相关论文
共 50 条
[41]   Transformation-based nonparametric estimation of multivariate densities [J].
Chang, Meng-Shiuh ;
Wu, Ximing .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 135 :71-88
[42]   A kernel-based method for nonparametric estimation of variograms [J].
Yu, Keming ;
Mateu, Jorge ;
Porcu, Emilio .
STATISTICA NEERLANDICA, 2007, 61 (02) :173-197
[43]   NONPARAMETRIC ESTIMATION OF UNCERTAIN DIFFERENTIAL EQUATIONS BASED ON RESIDUALS [J].
Lin, Xinran ;
Sheng, Yuhong .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2025, 21 (05) :3837-3851
[44]   Nonparametric bivariate distribution estimation using Bernstein polynomials under right censoring [J].
Dib, K. ;
Bouezmarni, T. ;
Belalia, M. ;
Kitouni, A. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (23) :5574-5584
[45]   Nonparametric estimation of the ratios of derivatives of a multivariate distribution density from dependent observations [J].
V. A. Vasil'ev ;
G. M. Koshkin .
Siberian Mathematical Journal, 2000, 41 :229-245
[46]   Nonparametric estimation of the ratios of derivatives of a multivariate distribution density from dependent observations [J].
Vasil'ev, VA ;
Koshkin, GM .
SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (02) :229-245
[48]   Nonparametric estimation of mark's distribution of an exponential shot-noise process [J].
Ilhe, Paul ;
Moulines, Eric ;
Roueff, Francois ;
Souloumiac, Antoine .
ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02) :3098-3123
[49]   Efficient estimation of the error distribution function in heteroskedastic nonparametric regression with missing data [J].
Chown, Justin .
STATISTICS & PROBABILITY LETTERS, 2016, 117 :31-39
[50]   Nonparametric estimation of the survival distribution under covariate-induced dependent truncation [J].
Vakulenko-Lagun, Bella ;
Qian, Jing ;
Chiou, Sy Han ;
Wang, Nancy ;
Betensky, Rebecca A. .
BIOMETRICS, 2022, 78 (04) :1390-1401