A new approach to nonlinear quartic oscillators

被引:0
|
作者
Rami Ahmad El-Nabulsi
Waranont Anukool
机构
[1] Chiang Mai University,Research Center for Quantum Technology, Faculty of Science
[2] Chiang Mai University,Department of Physics and Materials Science, Faculty of Science
[3] Athens Institute for Education and Research,Mathematics and Physics Divisions
来源
Archive of Applied Mechanics | 2022年 / 92卷
关键词
Nonstandard Lagrangians; Quadratic damping; Jacobi elliptic functions; 37J05; 70F40; 34C15;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we proved that damped quadratic nonlinear oscillators similar to Duffing and Helmholtz–Duffing damped equations which emerge in bubble dynamics with time-periodic straining flows and solitary-like wave's dynamics may be derived from a new functional approach based on nonstandard Lagrangians and fractional frictions. The solutions of these equations are given in terms of the Jacobi elliptic functions. It was observed that the dynamical model constructed in this study is comparable to dynamical systems with natural Lagrangians for which the Riemann structure is conformally flat which has important implications in dynamical systems with position-dependent mass.
引用
收藏
页码:351 / 362
页数:11
相关论文
共 50 条
  • [1] A new approach to nonlinear quartic oscillators
    El-Nabulsi, Rami Ahmad
    Anukool, Waranont
    ARCHIVE OF APPLIED MECHANICS, 2022, 92 (01) : 351 - 362
  • [2] New approach to level statistics of coupled quartic oscillators
    Yoshinaga, N
    Tomiya, M
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 142 (1-3) : 88 - 94
  • [3] A new analytical approach for solving quadratic nonlinear oscillators
    Mondal, Md. Mahtab Hossain
    Molla, Md. Helal Uddin
    Razzak, Md. Abdur
    Alam, M. S.
    ALEXANDRIA ENGINEERING JOURNAL, 2017, 56 (04) : 629 - 634
  • [4] A new analytical approach to investigate the strongly nonlinear oscillators
    Razzak, Md. Abdur
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (02) : 1827 - 1834
  • [5] The simplest approach to nonlinear oscillators
    He, Ji-Huan
    RESULTS IN PHYSICS, 2019, 15
  • [6] Variational approach for nonlinear oscillators
    He, Ji-Huan
    CHAOS SOLITONS & FRACTALS, 2007, 34 (05) : 1430 - 1439
  • [7] A simple approach to nonlinear oscillators
    Ren, Zhong-Fu
    He, Ji-Huan
    PHYSICS LETTERS A, 2009, 373 (41) : 3749 - 3752
  • [8] Hamiltonian approach to nonlinear oscillators
    He, Ji-Huan
    PHYSICS LETTERS A, 2010, 374 (23) : 2312 - 2314
  • [9] Integrable systems of quartic oscillators
    Bruschi, M
    Calogero, F
    PHYSICS LETTERS A, 2000, 273 (03) : 173 - 182
  • [10] Statistical mechanics of quartic oscillators
    Bannur, Vishnu M.
    Kaw, Predhiman K.
    Parikh, Jitendra C.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55 (3-A):