The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice

被引:0
作者
S. N. Lakaev
I. N. Bozorov
机构
[1] Samarkand State University,Samarkand Division
[2] Academy of Sciences of the Republic of Uzbekistan,undefined
来源
Theoretical and Mathematical Physics | 2009年 / 158卷
关键词
one-particle Hamiltonian; continuous spectrum; virtual level; eigenvalue; Birman-Schwinger operator; Fredholm determinant;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Hamiltonian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat h_{\mu \lambda } ,\mu ,\lambda \geqslant 0 $$\end{document}, describing the motion of one quantum particle on a three-dimensional lattice in an external field. We investigate the number of eigenvalues and their arrangement depending on the value of the interaction energy for µ ≥ 0 and λ ≥ 0.
引用
收藏
页码:360 / 376
页数:16
相关论文
共 25 条
[1]  
Efimov V.(1971)undefined Sov. J. Nucl. Phys. 12 589-564
[2]  
Efimov V.(1970)undefined Phys. Lett. B 33 563-559
[3]  
Yafaev D. R.(1974)undefined Math. USSR-Sb. 23 535-83
[4]  
Tamura H.(1993)undefined Nagoya Math. J. 130 55-103
[5]  
Vugal’ter S. A.(1982)undefined Comm. Math. Phys. 87 89-175
[6]  
Zhislin G. M.(1993)undefined Funct. Anal. Appl. 27 166-772
[7]  
Lakaev S. N.(2004)undefined Ann. Henri Poincaré 5 743-115
[8]  
Albeverio S.(2006)undefined Comm. Math. Phys. 262 91-1331
[9]  
Lakaev S. N.(1994)undefined Theor. Math. Phys. 101 1320-45
[10]  
Muminov Z. I.(2005)undefined Funct. Anal. Appl. 39 31-1357