Effect of Non-magnetic Ti4+ Ion Doping at Mn-site on Magnetocaloric Properties and Critical Behavior in AMn1-xTixO3 (0 ≤ x ≤ 0.2) Compounds

被引:0
作者
Aref Omri
E. Dhahri
E. K. Hlil
机构
[1] University Campus Agricultural City,Research Unit of Valuation and Optimization of Resource, Faculty of Science and Technology of Sidi Bouzid
[2] University of Kairouan,Laboratory of Applied Physics, Sfax Faculty of Science
[3] University of Sfax,Institut Néel
[4] CNRS - Université J. Fourier,undefined
来源
Journal of Low Temperature Physics | 2021年 / 204卷
关键词
Perovskite; Magnetic entropy change; Critical exponents;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a thorough study for the critical behavior of AMn1-xTixO3 (A = La0.5Pr0.2Sr0.3, x = 0.0 and 0.2) polycrystalline samples by analysing their isothermal magnetization data using various technique such us modified Arrott plots, Kouvel-Fischer method, and critical magnetisation isotherms M(TC,H). The critical exponent values for the undoped compound allowed us to assign a mean field universality class with long-range interactions (β = 0.509,γ = 1.094,δ = 3.14). The non-magnetic Ti-substitution does not affect the class of universality. The analysis shows that the critical exponents of all compounds were close to those of the mean field model with long-range interaction. The field dependence of the magnetic entropy change is also analyzed using-ΔSM=aHn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta S_{M} = a\left( H \right)^{n}$$\end{document} power law, where the exponent n values ranging between 0.68 and 0.74 are close to those obtained from the theoretical relation n(TC)=1+β-1/β+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n(T_C) = 1 + \left(\left( \beta - 1\right)/\left(\beta + \gamma \right)\right)$$\end{document}. The second-order nature of the magnetic phase transition has been confirmed by constructing the universal magnetic entropy change curves. The spontaneous magnetization values determined using the magnetic entropy change (∆SM vs. M2) are in good agreement with those obtained from the classical extrapolation of Arrott curves (H/M vs. M2).
引用
收藏
页码:64 / 84
页数:20
相关论文
共 116 条
  • [1] Coey JMD(1999)undefined Adv. Phys. 48 167-undefined
  • [2] Viret M(2001)undefined Phys. Rep. 1 344-undefined
  • [3] von Molnár S(2008)undefined J. Phys Cond. Matter. 20 273201-undefined
  • [4] Dagotto E(1993)undefined Appl. Phys. Lett. 63 1990-undefined
  • [5] Hotta T(1993)undefined Phys. Rev. Lett. 71 2331-undefined
  • [6] Moreo A(1993)undefined Appl. Phys. Lett. 63 1990-undefined
  • [7] Siwatch PK(1997)undefined Phys. Rev. Lett. 78 4494-undefined
  • [8] Siugh HK(2012)undefined J. Phys B. 407 2566-undefined
  • [9] Srivastava ON(2010)undefined Mater. Lett. 64 1045-undefined
  • [10] Chahara K(1951)undefined Phys. Rev. 82 403-undefined