A Generalized Radon Transform on the Plane

被引:0
作者
Zhongkai Li
Futao Song
机构
[1] Capital Normal University,Department of Mathematics
来源
Constructive Approximation | 2011年 / 33卷
关键词
Generalized Radon transform; Inversion formula; Riesz potential; Hankel transform; Jacobi polynomial; 44A12; 42C05; 65R32;
D O I
暂无
中图分类号
学科分类号
摘要
A new generalized Radon transform Rα, β on the plane for functions even in each variable is defined which has natural connections with the bivariate Hankel transform, the generalized biaxially symmetric potential operator Δα, β, and the Jacobi polynomials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{k}^{(\beta,\,\alpha)}(t)$\end{document}. The transform Rα, β and its dual \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\alpha,\,\beta}^{\ast}$\end{document} are studied in a systematic way, and in particular, the generalized Fuglede formula and some inversion formulas for Rα, β for functions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\alpha,\,\beta}^{p}(\mathbb{R}^{2}_{+})$\end{document} are obtained in terms of the bivariate Hankel–Riesz potential. Moreover, the transform Rα, β is used to represent the solutions of the partial differential equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Lu:=\sum_{j=1}^{m}a_{j}\Delta_{\alpha,\,\beta}^{j}u=f$\end{document} with constant coefficients aj and the Cauchy problem for the generalized wave equation associated with the operator Δα, β. Another application is that, by an invariant property of Rα, β, a new product formula for the Jacobi polynomials of the type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{k}^{(\beta,\,\alpha)}(s)C_{2k}^{\alpha+\beta+1}(t)=c\int\!\!\int P_{k}^{(\beta,\,\alpha)}$\end{document} is obtained.
引用
收藏
页码:93 / 123
页数:30
相关论文
共 23 条
[1]  
Benedek A.(1961)The spaces Duke Math. J. 28 301-324
[2]  
Panzone R.(1984) with mixed norm Commun. Pure. Appl. Math. 37 579-599
[3]  
Beylkin G.(1980)The inversion problem and applications of the generalized Radon transform Trans. Am. Math. Soc. 260 575-561
[4]  
Cormack A.M.(1979)A Radon transform on spheres through the origin in ℝ SIAM J. Math. Anal. 10 577-585
[5]  
Quinto E.T.(1958) and applications to the Darboux equation Math. Scand. 6 207-212
[6]  
Deans S.R.(1960/61)Gegenbauer transforms via the Radon transform J. Anal. Math. 8 307-336
[7]  
Fuglede B.(1974)An integral formula SIAM J. Math. Anal. 5 125-137
[8]  
Hirschman I.I.(1970)Variation diminishing Hankel transforms Commun. Pure. Appl. Math. 23 409-424
[9]  
Koornwinder T.H.(1956)Jacobi polynomials II. An analytic proof of the product formula Bull. Soc. Math. France 84 9-95
[10]  
Lax P.D.(1966)The Paley–Wiener theorem for the Radon transform Commun. Pure. Appl. Math. 19 49-81