Menger remainders of topological groups

被引:0
作者
Angelo Bella
Seçil Tokgöz
Lyubomyr Zdomskyy
机构
[1] University of Catania,Department of Mathematics and Computer Science
[2] Hacettepe University,Department of Mathematics, Faculty of Science
[3] University of Vienna,Kurt Gödel Research Center for Mathematical Logic
来源
Archive for Mathematical Logic | 2016年 / 55卷
关键词
Remainder; Topological group; Menger space; Hurewicz space; Scheepers space; Ultrafilter; Forcing; Primary 03E75; 54D40; 54D20; Secondary 03E35; 54D30; 54D80;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we discuss what kind of constrains combinatorial covering properties of Menger, Scheepers, and Hurewicz impose on remainders of topological groups. For instance, we show that such a remainder is Hurewicz if and only it is σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-compact. Also, the existence of a Scheepers non-σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-compact remainder of a topological group follows from CH and yields a P-point, and hence is independent of ZFC. We also make an attempt to prove a dichotomy for the Menger property of remainders of topological groups in the style of Arhangel’skii.
引用
收藏
页码:767 / 784
页数:17
相关论文
共 34 条
[1]  
Arhangel’skii A(1986)Hurewicz spaces, analytic sets and fan tightness of function spaces Doklady Akademii Nauk SSSR 287 525-528
[2]  
Arhangel’skii A(2008)Two types of remainders of topological groups Comment. Math. Univ. Carolin. 49 119-126
[3]  
Arhangel’skii A(2009)The Baire property in remainders of topological groups and other results Comment. Math. Univ. Carolin. 50 273-279
[4]  
Aurichi LF(2010)-Spaces, topological games, and selection principles Topol. Proc. 36 107-122
[5]  
Aurichi LF(2015)When is a space Menger at infinity? Appl. Gen. Topol. 16 75-80
[6]  
Bella A(2013)On strong P-points Proc. Am. Math. Soc. 141 2875-2883
[7]  
Blass A(1988)Mathias forcing which does not add dominating reals Proc. Am. Math. Soc. 104 1239-1248
[8]  
Hrušák M(2015)Mathias forcing and combinatorial covering properties of filters J. Symb. Logic 80 1398-1410
[9]  
Verner J(1988)Espaces hrditairement de Baire. (French) [Hereditarily Baire spaces] Fundam. Math. 129 199-206
[10]  
Canjar RM(1957)Some properties of compactifications Duke Math. J. 25 83-105