On perfect Roman domination number in trees: complexity and bounds

被引:0
作者
Mahsa Darkooti
Abdollah Alhevaz
Sadegh Rahimi
Hadi Rahbani
机构
[1] Shahrood University of Technology,Faculty of Mathematical Sciences
来源
Journal of Combinatorial Optimization | 2019年 / 38卷
关键词
Dominating set; Roman dominating function; Perfect Roman dominating function; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A perfect Roman dominating function on a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G =(V,E)$$\end{document} is a function f:V⟶{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: V \longrightarrow \{0, 1, 2\}$$\end{document} satisfying the condition that every vertex u with f(u)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u) = 0$$\end{document} is adjacent to exactly one vertex v for which f(v)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=2$$\end{document}. The weight of a perfect Roman dominating function f is the sum of the weights of the vertices. The perfect Roman domination number of G, denoted by γRp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{R}^{p}(G)$$\end{document}, is the minimum weight of a perfect Roman dominating function in G. In this paper, we first show that the decision problem associated with γRp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{R}^{p}(G)$$\end{document} is NP-complete for bipartite graphs. Then, we prove that for every tree T of order n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}, with ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} leaves and s support vertices, γRP(T)≤(4n-l+2s-2)/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _R^P(T)\le (4n-l+2s-2)/5$$\end{document}, improving a previous bound given in Henning et al. (Discrete Appl Math 236:235–245, 2018).
引用
收藏
页码:712 / 720
页数:8
相关论文
共 29 条
[1]  
Adabi M(2012)Properties of independent Roman domination in graphs Australas J Combin 52 11-18
[2]  
Targhi EE(2014)Signed Roman domination in graphs J Comb Optim 27 241-255
[3]  
Rad NJ(2016)Total Roman domination in graphs Appl Anal Discrete Math 10 501-517
[4]  
Moradi MS(2009)Extremal problems for Roman domination SIAM J Discrete Math 23 1575-1586
[5]  
Ahangar HA(2016)Roman 2-domination Discrete Appl Math 204 22-28
[6]  
Henning MA(2018)Perfect Roman domination in trees Discrete Appl Math 236 235-245
[7]  
Löwenstein C(2009)Roman k-domination in graphs J Korean Math Soc 46 1309-1318
[8]  
Zhao Y(2015)A taxonomy of perfect domination J Discrete Math Sci Cryptogr 18 105-116
[9]  
Samodivkin V(2009)Edge Roman domination in graphs J Comb Math Comb Comput 69 175-182
[10]  
Ahangar HA(undefined)undefined undefined undefined undefined-undefined