Global regularity for logarithmically critical 2D MHD equations with zero viscosity

被引:0
作者
Léo Agélas
机构
[1] IFP Energies nouvelles,Department of Mathematics
来源
Monatshefte für Mathematik | 2016年 / 181卷
关键词
MHD; Navier–Stokes; Euler; BKM’s criterion; 76W05; 35Q35; 35Q60; 76B03;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, the two-dimensional magneto-hydrodynamic (MHD) equations are considered with only magnetic diffusion. Here the magnetic diffusion is given by D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak D}$$\end{document} a Fourier multiplier whose symbol m is given by m(ξ)=|ξ|2log(e+|ξ|2)β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(\xi )=|\xi |^2\log (e+|\xi |^2)^\beta $$\end{document}. We prove that there exists an unique global solution in Hs(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s(\mathbb {R}^2)$$\end{document} with s>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>2$$\end{document} for these equations when β>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >1$$\end{document}. This result improves the previous works which require that m(ξ)=|ξ|2β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(\xi )=|\xi |^{2\beta }$$\end{document} with β>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >1$$\end{document} and brings us closer to the resolution of the well-known global regularity problem on the 2D MHD equations with standard Laplacian magnetic diffusion, namely m(ξ)=|ξ|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(\xi )=|\xi |^2$$\end{document}.
引用
收藏
页码:245 / 266
页数:21
相关论文
共 52 条
[1]  
Alfvén H(1942)Existence of electromagnetic-hydrodynamic waves Nature 150 405-406
[2]  
Beale JT(1984)Remarks on the breakdown of smooth solutions for the 3-D Euler equations Commun. Math. Phys. 94 61-66
[3]  
Kato T(2008)Nonexistence of self-similar singularities in the viscous magnetohydrodynamics with zero resistivity J. Funct. Anal. 254 441-453
[4]  
Majda A(1997)Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD Commun. Math. Phys. 184 443-455
[5]  
Chae D(2014)The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion SIAM J. Math. Anal. 46 588-602
[6]  
Caflisch RE(2011)Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion Adv. Math. 226 1803-1822
[7]  
Klapper I(2007)The Beale–Kato–Majda criterion for the 3D magneto-hydrodynamics equations Commun. Math. Phys. 275 861-872
[8]  
Steele G(2005)Geometric properties and non-blowup of 3-D incompressible Euler flow Commun. Partial Differ. Equ. 30 225-243
[9]  
Cao C(2014)Global Cauchy problem of 2D generalized MHD equations Monatsh. Math. 175 127-131
[10]  
Wu J(1991)Abstract Lp estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains J. Funct. Anal. 102 72-94