On the partial regularity of energy-minimizing, area-preserving maps

被引:0
|
作者
L.C. Evans
R.F. Gariepy
机构
[1] Department of Mathematics,
[2] University of California,undefined
[3] Berkeley,undefined
[4] CA 94720,undefined
[5] USA (e-mail: evans@math.berkeley.edu) ,undefined
[6] Department of Mathematics,undefined
[7] University of Kentucky,undefined
[8] Lexington,undefined
[9] KY 40506,undefined
[10] USA (e-mail: gariepy@ms.uky.edu) ,undefined
来源
Calculus of Variations and Partial Differential Equations | 1999年 / 9卷
关键词
Continuous Mapping; Generate Function; Partial Derivative; Minimization Problem; Partial Regularity;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a partial regularity assertion for a Lipschitz continuous mapping u in the plane that minimizes an appropriate convex (or quasiconvex) energy functional, under the “hard” constraint that det Du = 1 a.e. The primary technical assumption is that u be nondegenerate, meaning that, locally, at least one of its partial derivatives is bounded away from zero a.e. The method of proof is to convert to a related minimization problem for a generating function w, the advantage being that we now have the “soft” constraint \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $w_{y_1y_2}> 0$\end{document}.
引用
收藏
页码:357 / 372
页数:15
相关论文
共 50 条