Analysis of Chorin-type projection methods for the stochastic Stokes equations with general multiplicative noise

被引:0
作者
Xiaobing Feng
Liet Vo
机构
[1] The University of Tennessee,Department of Mathematics
来源
Stochastics and Partial Differential Equations: Analysis and Computations | 2023年 / 11卷
关键词
Stochastic Stokes equations; Multiplicative noise; Wiener process; Itô stochastic integral; Chorin projection scheme; Inf-sup condition; Error estimates.; 65N12; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with numerical analysis of two fully discrete Chorin-type projection methods for the stochastic Stokes equations with general non-solenoidal multiplicative noise. The first scheme is the standard Chorin scheme and the second one is a modified Chorin scheme which is designed by employing the Helmholtz decomposition on the noise function at each time step to produce a projected divergence-free noise and a “pseudo pressure" after combining the original pressure and the curl-free part of the decomposition. An O(k14)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k^\frac{1}{4})$$\end{document} rate of convergence is proved for the standard Chorin scheme, which is sharp but not optimal due to the use of non-solenoidal noise, where k denotes the time mesh size. On the other hand, an optimal convergence rate O(k12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k^\frac{1}{2})$$\end{document} is established for the modified Chorin scheme. The fully discrete finite element methods are formulated by discretizing both semi-discrete Chorin schemes in space by the standard finite element method. Suboptimal order error estimates are derived for both fully discrete methods. It is proved that all spatial error constants contain a growth factor k-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{-\frac{1}{2}}$$\end{document}, where k denotes the time step size, which explains the deteriorating performance of the standard Chorin scheme when k→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\rightarrow 0$$\end{document} and the space mesh size is fixed as observed earlier in the numerical tests of Carelli et al. (SIAM J Numer Anal 50(6):2917–2939, 2012). Numerical results are also provided to guage the performance of the proposed numerical methods and to validate the sharpness of the theoretical error estimates.
引用
收藏
页码:269 / 306
页数:37
相关论文
共 30 条
[1]  
Bensoussan A(1995)Stochastic Navier–Stokes equations Acta Appl. Math. 38 267-304
[2]  
Bensoussan A(1973)Equations stochastiques du type Navier–Stokes J. Funct. Anal. 13 195-222
[3]  
Temam R(2014)Splitting up method for the 2D stochastic Navier–Stokes equations Stoch. PDE Anal. Comp. 2 433-470
[4]  
Bessaih H(2013)Finite element based discretizations of the incompressible Navier–Stokes equations with multiplicative random forcing IMA J. Numer. Anal. 33 771-824
[5]  
Brzeźniak Z(2012)Time-splitting methods to solve the stochastic incompressible Stokes equations SIAM J. Numer. Anal. 50 2917-2939
[6]  
Millet A(2012)Rates of convergence for discretizations of the stochastic incompressible Navier–Stokes equations SIAM J. Numer. Anal. 50 2467-2496
[7]  
Brzeźniak Z(2021)Analysis of fully discrete mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise J. Sci. Comput. 88 31-2310
[8]  
Carelli E(2021)Optimally convergent mixed finite element methods for the stochastic stokes equations IMA J. Numer. Anal. 41 2280-6045
[9]  
Prohl A(2006)An overview of projection methods for incompressible flows Comput. Methods Appl. Mech. Engrg. 195 6011-99
[10]  
Carelli E(1986)A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal order interpolation Comput. Meth Appl. Mech. Eng. 59 85-1032