Thiol redox biochemistry: Insights from computer simulations

被引:29
作者
Zeida A. [1 ]
Guardia C.M. [1 ]
Lichtig P. [1 ]
Perissinotti L.L. [2 ]
Defelipe L.A. [3 ]
Turjanski A. [3 ]
Radi R. [4 ]
Trujillo M. [4 ]
Estrin D.A. [1 ]
机构
[1] Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Universidad de Buenos Aires, C1428EHA Buenos Aires, Ciudad Universitaria
[2] Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 2N4
[3] Departamento de Química Biológica and INQUIMAE-CONICET, Universidad de Buenos Aires, C1428EHA Buenos Aires, Ciudad Universitaria
[4] Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Av. Gral Flores 2125
关键词
Computer simulations; Oxidation; Redox homeostasis; Thiols;
D O I
10.1007/s12551-013-0127-x
中图分类号
学科分类号
摘要
Thiol redox chemical reactions play a key role in a variety of physiological processes, mainly due to the presence of low-molecular-weight thiols and cysteine residues in proteins involved in catalysis and regulation. Specifically, the subtle sensitivity of thiol reactivity to the environment makes the use of simulation techniques extremely valuable for obtaining microscopic insights. In this work we review the application of classical and quantum-mechanical atomistic simulation tools to the investigation of selected relevant issues in thiol redox biochemistry, such as investigations on (1) the protonation state of cysteine in protein, (2) two-electron oxidation of thiols by hydroperoxides, chloramines, and hypochlorous acid, (3) mechanistic and kinetics aspects of the de novo formation of disulfide bonds and thiol-disulfide exchange, (4) formation of sulfenamides, (5) formation of nitrosothiols and transnitrosation reactions, and (6) one-electron oxidation pathways. © 2014 International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:27 / 46
页数:19
相关论文
共 179 条
  • [1] Abkevich V.I., Shakhnovich E.I., What can disulfide bonds tell us about protein energetics, function and folding: simulations and bioninformatics analysis, J Mol Biol, 300, pp. 975-985, (2000)
  • [2] Ackermann K.R., Koster J., Schlucker S., Conformations and vibrational properties of disulfide bridges: Potential energy distribution in the model system diethyl disulfide, Chem Phys, 355, pp. 81-84, (2009)
  • [3] Alexov E., Mehler E.L., Baker N., Baptista A.M., Huang Y., Milletti F., Nielsen J.E., Farrell D., Carstensen T., Olsson M.H.M., Shen J.K., Warwicker J., Williams S., Word J.M., Progress in the prediction of pKa values in proteins, Proteins, 79, pp. 3260-3275, (2011)
  • [4] Alonso A., Sasin J., Bottini N., Friedberg I., Friedberg I., Et al., Protein tyrosine phosphatases in the human genome, Cell, 117, pp. 699-711, (2004)
  • [5] Anderson B.D., Luo D., Application of an exact mathematical model and the steady-state approximation to the kinetics of the reaction of cysteine and hydrogen peroxide in aqueous solution: a reply to the Ashby and Nagy commentary, J Pharm Sci, 95, pp. 19-24, (2006)
  • [6] Angelo M., Singel D.J., Stamler J.S., An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate, Proc Natl Acad Sci USA, 103, pp. 8366-8371, (2006)
  • [7] Arulsamy N., Bohle D.S., Butt J.A., Irvine G.J., Interrelationships between conformational dynamics and the redox chemistry of S-nitrosothiols, J Am Chem Soc, 121, pp. 7115-7123, (1999)
  • [8] Ashby M.T., Nagy P., On the kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution, J Pharm Sci, 95, pp. 15-18, (2006)
  • [9] Ashby M.T., Nagy P., Revisiting a proposed kinetic model for the reaction of cysteine and hydrogen peroxide via cysteine sulfenic acid, Int J Chem Kinet, 39, pp. 32-38, (2006)
  • [10] Bach R.D., Dmitrenko O., Thorpe C., Mechanism of thiolate-disulfide interchange reactions in biochemistry, J Org Chem, 73, pp. 12-21, (2008)