Classification of η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Biharmonic Surfaces in Non-flat Lorentz Space Forms

被引:0
作者
Li Du
机构
[1] Chongqing University of Technology,School of Science
关键词
Lorentz space forms; -biharmonic surfaces; Isoparametric; Complex circle; B-scroll; 53C50;
D O I
10.1007/s00009-018-1250-5
中图分类号
学科分类号
摘要
In this paper, we prove that η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-biharmonic surfaces in non-flat three-dimensional Lorentz space forms are isoparametric and give full classification results.
引用
收藏
相关论文
共 62 条
[1]  
Abe N(1987)Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form Yokohama Math. J. 35 123-136
[2]  
Koike N(2007)Biharmonic Lorentz hypersurfaces in Pac. J. Math. 229 293-305
[3]  
Yamaguchi S(2008)Classification results for biharmonic submanifolds in spheres Isr. J. Math. 168 201-220
[4]  
Arvanitoyeorgos A(2001)Biharmonic submanifolds of Int. J. Math. 12 867-876
[5]  
Defever F(2002)Biharmonic submanifolds in spheres Isr. J. Math. 130 109-123
[6]  
Kaimakamis G(1988)Null two-type surfaces in Kodai Math. J. 11 295-299
[7]  
Papantoniou VJ(1991) are circular cylinders Soochow J. Math. 17 169-188
[8]  
Balmuş A(1991)Some open problems and conjectures on submanifolds of finite type Mem. Fac. Sci. Kyushu Univ. Ser. A. 45 323-347
[9]  
Montaldo S(1998)Biharmonic surfaces in pseudo-Euclidean spaces Kyushu J. Math. 52 167-185
[10]  
Oniciuc C(1992)Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces Bull. Inst. Math. Acad. Sin. 20 53-65