An estimate for the scalar curvature of constant mean curvature hypersurfaces in space forms

被引:0
作者
Luis J. Alías
S. Carolina García-Martínez
机构
[1] Universidad de Murcia,Departamento de Matemáticas
来源
Geometriae Dedicata | 2012年 / 156卷
关键词
Constant mean curvature; Scalar curvature; Ricci curvature; Second fundamental form; Omori-Yau maximum principle; 53C40; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we derive a sharp estimate for the supremum of the scalar curvature (or, equivalently, the infimum of the squared norm of the second fundamental form) of a constant mean curvature hypersurface with two principal curvatures immersed into a Riemannian space form of constant curvature. Our results will be an application of the generalized Omori-Yau maximum principle, following the approach by Pigola et al. (Memoirs Am Math Soc 822, 2005).
引用
收藏
页码:31 / 47
页数:16
相关论文
共 38 条
  • [1] Alías L.J.(2004)Hypersurfaces with constant mean curvature and two principal curvatures in An. Acad. Brasil. Cienc. 76 489-497
  • [2] de Almeida S.C.(2010)On the scalar curvature of constant mean curvature hypersurfaces in space forms J. Math. Anal. Appl. 363 579-587
  • [3] Brasil A.(1938)Familles de surfaces isoparamétriques dans les espaces à courbure constante Ann. Mat. Pura Appl. 17 177-191
  • [4] Alías L.J.(1996)The rigidity of the Clifford torus Comm. Math. Helv. 71 60-69
  • [5] García-Martínez S.C.(1983)Rotation hypersurfaces in spaces of constant curvature Trans. Am. Math. Soc. 277 685-709
  • [6] Cartan E.(2005)Complete minimal hypersurfaces in a unit sphere Monatsh. Math. 145 301-305
  • [7] Cheng Q.-M.(2000)A pinching theorem for minimal hypersurfaces in a sphere Arch. Math. 75 469-471
  • [8] do Carmo M.(1973)Surfaces of constant mean curvature in manifolds of constant curvature J. Differ. Geom. 8 161-176
  • [9] Dajczer M.(1966)Complete surfaces in E 3 with constant mean curvature Comment. Math. Helv. 41 313-318
  • [10] Hasanis T.(1937)Famiglia di superfici isoparametriche nell’ordinario spazio Euclideo Att. Accad. naz Lincie Rend. Cl. Sci. Fis. Mat. Nat. 26 355-362