Estimating the growth in Mordell–Weil ranks and Shafarevich–Tate groups over Lie extensions

被引:0
作者
Daniel Delbourgo
Antonio Lei
机构
[1] University of Waikato,The Department of Mathematics
[2] Université Laval,Département de mathématiques et de statistique
[3] Pavillon Alexandre-Vachon,undefined
来源
The Ramanujan Journal | 2017年 / 43卷
关键词
Elliptic curves; Mordell–Weil ranks; Noncommutative Iwasawa theory; Primary 11R23; 11G05; 22E20; 22E05;
D O I
暂无
中图分类号
学科分类号
摘要
Let E/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{/\mathbb {Q}}\!$$\end{document} be an elliptic curve, p>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>3$$\end{document} a good ordinary prime for E, and K∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_\infty $$\end{document} a p-adic Lie extension of a number field k. Under some standard hypotheses, we study the asymptotic growth in both the Mordell–Weil rank and Shafarevich–Tate group for E over a tower of extensions Kn/k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n/k$$\end{document} inside K∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_\infty $$\end{document}; we obtain lower bounds on the former, and upper bounds on the latter’s size.
引用
收藏
页码:29 / 68
页数:39
相关论文
共 32 条
  • [1] Darmon H(2010)Tian, Ye: Heegner points over towers of Kummer extensions Can. J. Math. 62 1060-1081
  • [2] Dokchitser T(2009)Dokchitser, Vladimir: Regulator constants and the parity conjecture Invent. Math. 178 23-71
  • [3] Guo L(1993)General Selmer groups and critical values of Hecke Math. Ann. 297 221-233
  • [4] Greenberg R(2003)-functions Compos. Math. 136 255-297
  • [5] Cuoco AA(1981)Galois theory for the Selmer group of an abelian variety Math. Ann. 255 235-258
  • [6] Monsky P(2011)Class numbers in Algebr. Number Theory 5 819-848
  • [7] Perbet G(2009)-extensions J. Group Theory 12 711-734
  • [8] Gonzalez-Sanchez J(2015)Sur les invariants d’Iwasawa dans les extensions de Lie Rocky Mt. J. Math. 45 1807-1838
  • [9] Klopsch B(2010)-adiques J. Algebr. Geom. 19 19-97
  • [10] Delbourgo D(2005)Analytic pro-p groups of small dimensions Proc. Lond. Math. Soc. (3) 91 300-324