Combinatorial invariance of Kazhdan-Lusztig polynomials on intervals starting from the identity

被引:0
作者
Ewan Delanoy
机构
[1] Université Lyon 1,Institut Camille Jordan, UMR 5208 CNRS
来源
Journal of Algebraic Combinatorics | 2006年 / 24卷
关键词
Coxeter group; Kazhdan-Lusztig polynomials; Special matching;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for Bruhat intervals starting from the identity in Coxeter groups the conjecture of Lusztig and Dyer holds, that is, the R-polynomials and the Kazhdan-Lusztig polynomials defined on [e,u] only depend on the isomorphism type of [e,u]. To achieve this we use the purely poset-theoretic notion of special matching. Our approach is essentially a synthesis of the explicit formula for special matchings discovered by Brenti and the general special matching machinery developed by Du Cloux.
引用
收藏
页码:437 / 463
页数:26
相关论文
共 8 条
  • [1] Brenti F.(1994)A combinatorial formula for Kazhdan-Lusztig polynomials Invent. Math. 118 371-394
  • [2] Brenti F.(2004)The intersection cohomology of Schubert varieties is a combinatorial invariant Europ. J. Combin. 25 1151-1167
  • [3] du Cloux F.(2000)An abstract model for Bruhat intervals Europ. J. Combin. 21 197-222
  • [4] du Cloux F.(2003)Rigidity of Schubert closures and invariance of Kazhdan-Lusztig polynomials Adv. in Math. 180 146-175
  • [5] du Cloux F.(1999)A transducer approach to Coxeter groups J. Symb. Comp 27 1-14
  • [6] Kazhdan D.(1979)Representations of Coxeter Groups and Hecke Algebras Invent. Math. 53 165-184
  • [7] Lusztig G.(1989)Automorphisms of the Bruhat ordering on Coxeter groups Bull. London Math. Soc. 21 243-248
  • [8] Waterhouse W.C.(undefined)undefined undefined undefined undefined-undefined