The field of moduli of singular K3 surfaces

被引:0
作者
Roberto Laface
机构
[1] Technische Universität München,
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2020年 / 199卷
关键词
K3 surfaces; Abelian surfaces; Elliptic curves; Complex multiplication; Class field theory; Field of moduli; 14J28; 14K15; 14K22;
D O I
暂无
中图分类号
学科分类号
摘要
We study the field of moduli of singular K3 surfaces. We discuss both the field of moduli over the CM field and over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Q}}}$$\end{document}. As a by-product, we show non-finiteness of isomorphism classes of singular K3 surfaces with field of moduli of bounded degree. Finally, we provide an explicit description of the field of moduli in terms of the 2-torsion of the Galois group of the ring class field over which the K3 surface is defined.
引用
收藏
页码:509 / 531
页数:22
相关论文
共 8 条
[1]  
Beauville A(2014)Some surfaces with maximal Picard number J. Éc. Polytech. Math. 1 101-116
[2]  
Koizumi S(1972)The fields of moduli for polarized abelian varieties and for curves Nagoya Math. J. 48 37-55
[3]  
Matsusaka T(1956)Polarized varieties, the fields of moduli and generalized Kummer varieties of abelian varieties Proc. Jpn. Acad. 32 367-372
[4]  
Morrison DR(1984)On K3 surfaces with large Picard number Invent. Math. 75 105-121
[5]  
Schütt M(2007)Fields of definition of singular Commun. Number Theory Phys. 1 307-321
[6]  
Serre J-P(1968) surfaces Ann. Math. 2 492-517
[7]  
Tate J(2009)Good reduction of abelian varieties Trans. Am. Math. Soc. 361 909-949
[8]  
Shimada I(undefined)Transcendental lattices and supersingular reduction lattices of a singular undefined undefined undefined-undefined