Effect of the Intermediate Principal Stress on Pre-peak Damage Propagation in Hard Rock Under True Triaxial Compression

被引:0
作者
Zhuorui Wu
Tingting Xu
Chloé Arson
机构
[1] Tongji University,
[2] Georgia Institute of Technology,undefined
来源
Rock Mechanics and Rock Engineering | 2022年 / 55卷
关键词
True triaxial stress state; Damage; Anisotropy; Continuum damage mechanics; Micro-mechanics;
D O I
暂无
中图分类号
学科分类号
摘要
It is of foremost importance to understand the mechanisms of damage propagation in rock under true triaxial stress. True triaxial compression tests reported in the literature do reflect the effect of the intermediate principal stress (σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _2$$\end{document}), but predictive models are still lacking. In this paper, an enhanced version of the Discrete Equivalent Wing Crack Damage (DEWCD) model initially proposed in Jin and Arson (in Int J Solids Struct 110:279–293, 2017) is calibrated and tested to bridge this gap. The original DEWCD model can predict most mechanical non-linearities induced by damage but it cannot capture dilatancy effects accurately. To overcome this limitation, a dependence of the energy release rate on the first and third stress invariants is introduced in the damage potential. The enhanced DEWCD model depends on eight constitutive parameters. An automated calibration procedure is adopted to match pre-peak stress-strain curves obtained experimentally in Feng et al. (in Rock Mech Rock Eng 52(7):2109–2122, 2019) during true triaxial compression. The model successfully captures the differences in deformation and damage in the three principal directions of loading and accurately predicts that an increase of compression σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _2$$\end{document} yields a decrease of the intermediate (tensile) deformation, a triggering of damage at a lower value of σ1-σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _1-\sigma _2$$\end{document}, as well as a decrease of cumulated damage in the direction of σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _2$$\end{document} and an increase of cumulated damage in the direction of σ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _3$$\end{document} at the stress peak (pre-softening). During the true triaxial compression stage, a higher intermediate principal stress hinders dilatancy such that the volumetric strain at the peak of σ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _1$$\end{document} changes from dilation to shrinkage. The enhanced DEWCD model shows good performance in axis-symmetric compression and true triaxial compression, both for monotonic and cyclic loading. A comparison of three true triaxial stress paths at constant/variable mean stress/Lode angle suggests that: (i) the mean stress controls damage hardening and the sign of the volumetric strain rate at damage initiation, (ii) the second stress invariant is the primary control factor of the direction of the irreversible deviatoric strain rate during triaxial loading and of the sign of the total volumetric strain rate at failure; (iii) the Lode angle controls the direction of the total deviatoric strain rate.
引用
收藏
页码:6475 / 6494
页数:19
相关论文
共 147 条
[1]  
Amendt D(2013)Mechanical characterization in unconventional reservoirs: a facies-based methodology Petrophysics 54 457-464
[2]  
Busetti S(2008)On damage modelling in unsaturated clay rocks Phys Chem Earth 33 S407-S415
[3]  
Wenning Q(1986)Efficient numerical integration on the surface of a sphere ZAMM 66 37-49
[4]  
Arson C(2009)Higher order derivatives and perturbation bounds for determinants Linear Algebra Appl 431 2102-2108
[5]  
Gatmiri B(1978)Volume changes during fracture and frictional sliding: a review Pure Appl Geophys 116 603-614
[6]  
Bažant P(1980)Limits on lithospheric stress imposed by laboratory experiments J Geophys Res 85 6248-6252
[7]  
Oh B(1966)Dilatancy in the fracture of crystalline rocks J Geophys Res (1896-1977) 71 3939-3953
[8]  
Bhatia R(1976)Elastic moduli of a cracked solid Int J Solids Struct 12 81-97
[9]  
Jain T(1993)Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage Int J Damage Mech 2 311-329
[10]  
Brace W(2000)True triaxial strength and deformability of the German continental deep drilling program (ktb) deep hole amphibolite J Geophys Res 105 18999-19013