On a Coefficient Body for Concave Functions

被引:0
作者
Rintaro Ohno
Hiroshi Yanagihara
机构
[1] Tohoku University,Graduate School of Information Sciences
[2] Yamaguchi University,Department of Applied Science, Faculty of Engineering
来源
Computational Methods and Function Theory | 2013年 / 13卷
关键词
Univalent functions; Concave functions; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
For p∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (0,1),$$\end{document} let Cop\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal C o_p$$\end{document} be the class of meromorphic and univalent functions f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} in the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D }$$\end{document} with a simple pole at p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} such that C\f(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{C }\backslash f(\mathbb{D })$$\end{document} is convex. These so-called concave functions can be expanded as f(z)=∑n=0∞an(f)zn,|z|<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(z)= \sum _{n=0}^{\infty } a_n(f)z^n, \quad |z|<p \end{aligned}$$\end{document}or f(z)=∑n=-1∞cn(f)(z-p)n,|z-p|<1-p.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(z)= \sum _{n=-1}^{\infty } c_n(f) (z-p)^n, \quad |z-p|<1-p. \end{aligned}$$\end{document}The present article shows a representation formula for functions of class Cop\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal C o_p$$\end{document}, using functions of positive real part, and gives an explicit description of the coefficient body a1(f),c-1(f),c1(f).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ a_1(f), c_{-1}(f), c_1(f) \right\} . \end{aligned}$$\end{document}
引用
收藏
页码:237 / 251
页数:14
相关论文
共 9 条
[1]  
Bhowmik B.(2007)Domains of variability of Laurent coefficients and the convex hull for the family of concave univalent functions Kodai Math. J. 30 385-393
[2]  
Ponnusamy S.(1994)Convex meromorphic mappings Ann. Pol. Math. 59 275-291
[3]  
Wirths K.-J.(1971)A variational method for classes of meromorphic functions J. Anal. Math. 24 101-150
[4]  
Livingston AE(1970)Some remarks on convex maps of the unit disk Duke Math. J. 37 775-777
[5]  
Pfaltzgraff J(2006)On the residuum of concave univalent functions Serdica Math. J. 32 209-214
[6]  
Pinchuk B(2005)Regions of variability for functions of bounded derivatives Kodai Math. J. 28 452-462
[7]  
Suffridge TJ(undefined)undefined undefined undefined undefined-undefined
[8]  
Wirths K-J(undefined)undefined undefined undefined undefined-undefined
[9]  
Yanagihara H(undefined)undefined undefined undefined undefined-undefined