Random discretization of stationary continuous time processes

被引:0
作者
Anne Philippe
Caroline Robet
Marie-Claude Viano
机构
[1] Université de Nantes,Laboratoire de Mathématiques Jean Leray
[2] Université de Lille 1,Laboratoire Paul Painlevé UMR CNRS 8524, UFR de Mathematiques – Bat M2
来源
Metrika | 2021年 / 84卷
关键词
Gaussian process; Long memory; Partial sum; Random sampling; Regularly varying covariance;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates second order properties of a stationary continuous time process after random sampling. While a short memory process always gives rise to a short memory one, we prove that long-memory can disappear when the sampling law has very heavy tails. Despite the fact that the normality of the process is not maintained by random sampling, the normalized partial sum process converges to the fractional Brownian motion, at least when the long memory parameter is preserved.
引用
收藏
页码:375 / 400
页数:25
相关论文
共 46 条
  • [1] Brockwell PJ(2007)Continuous-time Gaussian autoregression Stat Sin 17 63-80
  • [2] Davis RA(2007)Time series models for spectral analysis of irregular data far beyond the mean data rate Meas Sci Technol 19 015103-390
  • [3] Yang Y(1996)The estimation of continuous parameter long-memory time series models Econom Theory 12 374-36
  • [4] Broersen PM(1996)Simulation and estimation of long memory continuous time models J Time Ser Anal 17 19-149
  • [5] Chambers MJ(1996)Long memory continuous time models J Econom 73 101-498
  • [6] Comte F(1970)The invariance principle for stationary processes Theory Probab Appl 15 487-1808
  • [7] Comte F(2004)Estimation of continuous-time markov processes sampled at random time intervals Econometrica 72 1773-4322
  • [8] Renault E(2019)Discrete-time autoregressive model for unequally spaced time-series observations Astron Astrophys 627 A120-757
  • [9] Davydov YA(2018)An irregular discrete time series model to identify residuals with autocorrelation in astronomical light curves Mon Not R Astron Soc 481 4311-81
  • [10] Duffie D(1962)The interpolation of time series by related series J Am Stat Assoc 57 729-988