Observational constraints on the jerk parameter with the data of the Hubble parameter

被引:0
作者
Abdulla Al Mamon
Kazuharu Bamba
机构
[1] Jadavpur University,Department of Mathematics
[2] Fukushima University,Division of Human Support System, Faculty of Symbiotic Systems Science
来源
The European Physical Journal C | 2018年 / 78卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the accelerated expansion phase of the universe by using the kinematic approach. In particular, the deceleration parameter q is parametrized in a model-independent way. Considering a generalized parametrization for q, we first obtain the jerk parameter j (a dimensionless third time derivative of the scale factor) and then confront it with cosmic observations. We use the latest observational dataset of the Hubble parameter H(z) consisting of 41 data points in the redshift range of 0.07≤z≤2.36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.07 \le z \le 2.36$$\end{document}, larger than the redshift range that covered by the Type Ia supernova. We also acquire the current values of the deceleration parameter q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_0$$\end{document}, jerk parameter j0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j_0$$\end{document} and transition redshift zt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_t$$\end{document} (at which the expansion of the universe switches from being decelerated to accelerated) with 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document} errors (68.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$68.3\%$$\end{document} confidence level). As a result, it is demonstrate that the universe is indeed undergoing an accelerated expansion phase following the decelerated one. This is consistent with the present observations. Moreover, we find the departure for the present model from the standard Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM model according to the evolution of j. Furthermore, the evolution of the normalized Hubble parameter is shown for the present model and it is compared with the dataset of H(z).
引用
收藏
相关论文
共 134 条
[1]  
Riess AG(1998)undefined Astron. J. 116 1009-undefined
[2]  
Perlmutter S(1999)undefined Astrophys. J. 517 565-undefined
[3]  
Tegmark M(2004)undefined Phys. Rev. D. 69 103501-undefined
[4]  
Seljak U(2005)undefined Phys. Rev. D. 71 103515-undefined
[5]  
Eisenstein DJ(2005)undefined Astrophys. J. 633 560-undefined
[6]  
Komatsu E(2011)undefined Astrophys. J. Suppl. 192 18-undefined
[7]  
Hinshaw G(2013)undefined Astrophys. J. Suppl. 208 19-undefined
[8]  
Nojiri S(2011)undefined Phys. Rept. 505 59-undefined
[9]  
Odintsov SD(2011)undefined Phys. Rept. 509 167-undefined
[10]  
Capozziello S(2015)undefined Symmetry 7 220-undefined