In this paper, we present a Bayesian analysis of mixture models for survival data in the presence of one covariate, and type II censoring data. Considering Gibbs with Metropolis-Hastings algorithms, we get Monte Carlo estimates for the posterior quantities of interest, assuming different choices for the densities in the mixture model. We introduce a numerical example, to illustrate the proposed methodology.
机构:
Univ Med Ctr Freiburg, Inst Med Biometry & Med Informat, Freiburg, GermanyUniv Med Ctr Freiburg, Inst Med Biometry & Med Informat, Freiburg, Germany
Schoop, R.
Graf, E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Med Ctr Freiburg, Inst Med Biometry & Med Informat, Freiburg, GermanyUniv Med Ctr Freiburg, Inst Med Biometry & Med Informat, Freiburg, Germany
Graf, E.
Schumacher, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Med Ctr Freiburg, Inst Med Biometry & Med Informat, Freiburg, GermanyUniv Med Ctr Freiburg, Inst Med Biometry & Med Informat, Freiburg, Germany
机构:
North West Univ, Unit Business Math & Informat, ZA-2520 Potchefstroom, South AfricaNorth West Univ, Unit Business Math & Informat, ZA-2520 Potchefstroom, South Africa