Entropy-Driven Phase Transition in Low-Temperature Antiferromagnetic Potts Models

被引:0
作者
Roman Kotecký
Alan D. Sokal
Jan M. Swart
机构
[1] University of Warwick,Department of Mathematics
[2] Charles University,Center for Theoretical Study
[3] New York University,Department of Physics
[4] University College London,Department of Mathematics
[5] Institute of Information Theory and Automation of the ASCR (ÚTIA),undefined
来源
Communications in Mathematical Physics | 2014年 / 330卷
关键词
Planar Graph; Gibbs Measure; Simple Circuit; Graph Automorphism; Minimal Cutset;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of long-range order at sufficiently low temperatures, including zero temperature, for the three-state Potts antiferromagnet on a class of quasi-transitive plane quadrangulations, including the diced lattice. More precisely, we show the existence of (at least) three infinite-volume Gibbs measures, which exhibit spontaneous magnetization in the sense that vertices in one sublattice have a higher probability to be in one state than in either of the other two states. For the special case of the diced lattice, we give a good rigorous lower bound on this probability, based on computer-assisted calculations that are not available for the other lattices.
引用
收藏
页码:1339 / 1394
页数:55
相关论文
共 91 条
[1]  
Alm S.E.(2004)Bounds for the connective constant of the hexagonal lattice J. Phys. A: Math. Gen. 37 549-560
[2]  
Parviainen R.(1982)Antiferromagnetic Potts and Ashkin–Teller models in three dimensions Phys. Rev. B 25 4639-4650
[3]  
Banavar J.R.(1995)Separating double rays in locally finite planar graphs Discrete Math. 145 61-72
[4]  
Grest G.S.(1982)Roughening transitions and the zero-temperature triangular Ising antiferromagnet J. Phys. A: Math. Gen. 15 L631-L637
[5]  
Jasnow D.(2006)Duality in infinite graphs J. Comb. Theory. B 96 225-239
[6]  
Bonnington C.P.(2010)Duality of ends Comb. Probab. Comput. 19 47-60
[7]  
Imrich W.(1997)A constrained Potts antiferromagnet model with an interface representation J. Phys. A: Math. Gen. 30 8385-8413
[8]  
Watkins M.E.(1964)Regular compound tessellations of the hyperbolic plane Proc. R. Soc. London A 278 147-167
[9]  
Blöte H.W.J.(2011)Finite-temperature phase transition in a class of four-state Potts antiferromagnets Phys. Rev. Lett. 107 150601-206
[10]  
Hilhorst H.J.(1988)The Freudenthal compactification Dissertationes Math. (Rozprawy Mat.) 262 35-89