Numerical blow-up for a nonlinear heat equation

被引:0
作者
Firmin K. N’Gohisse
Théodore K. Boni
机构
[1] Université d’Abobo-Adjamé,Département de Mathématiques et Informatique
[2] UFR-SFA,undefined
[3] Institut National Polytechnique Houphouët-Boigny de Yamoussoukro,undefined
来源
Acta Mathematica Sinica, English Series | 2011年 / 27卷
关键词
Semidiscretization; blow-up; numerical blow-up time; nonlinear heat equations; 35B40; 35B50; 35K60; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the study of the numerical approximation for the following initialboundary value problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ \begin{gathered} u_t - u_{xx} = f\left( u \right), x \in \left( {0,1} \right), t \in \left( {0,T} \right), \hfill \\ u\left( {0,t} \right) = 0, u_x \left( {1,t} \right) = 0, t \in \left( {0,T} \right), \hfill \\ u\left( {x,0} \right) = u_0 \left( x \right), x \in \left[ {0,1} \right], \hfill \\ \end{gathered} \right. $$\end{document} where f(s) is a positive, increasing, C1 convex function for the nonnegative values of s, f(0) > 0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{ds}} {{f\left( s \right)}} $$\end{document} < ∞, u0 ∈ C1([0, 1]), u0(0) = 0, u′0(1) = 0. We find some conditions under which the solution of a semidiscrete form of the above problem blows up in a finite time and estimate its semidiscrete blow-up time. We also prove the convergence of the semidiscrete blow-up time to the theoretical one. A similar study has been also undertaken for a discrete form of the above problem. Finally, we give some numerical results to illustrate our analysis.
引用
收藏
页码:845 / 862
页数:17
相关论文
共 72 条
[1]  
Nakagawa T.(1976)Blowing up on the finite difference solution to Appl. Math. Optim. 2 337-350
[2]  
Weissler F. B.(1985) = Comm. Pure Appl. Math. 38 291-295
[3]  
Chen Y. G.(1986) + J. Fac. Sci. Univ. Tokyo, Sec IA Math. 33 541-574
[4]  
Friedman A.(1987)An SIAM J. Math. Anal. 18 711-721
[5]  
Lacey A. A.(1991) blow-up estimate for a nonlienar heat equation Publ. Res. Inst. Math. Sci. 27 695-709
[6]  
Mai I.(1991)Asymptotic behaviours of blowing up solution for finite difference analogue of Publ. Res. Inst. Math. Sci. 27 375-398
[7]  
Mochizuki K.(1996) = Adv. Diff. Eq. 1 73-90
[8]  
Suzuki R.(1998)+ C. R. Acad. Sci. Paris, Srie I 326 317-322
[9]  
Brezis H.(1999)The blow-up time for solutions of nonlinear heat equations with small diffusion Asymptot. Anal. 21 187-208
[10]  
Cazenave T.(2002)On blow-up of solutions for quasilinear degeneate parabolic equations Math. Models Methods. Appl. Sci. 12 461-483