Zig-Zag Diagrams and Conformal Triangles

被引:0
作者
S. E. Derkachev
A. I. Isaev
L. A. Shumilov
机构
[1] St. Petersburg Department of the Steklov Mathematical Institute,
[2] Russian Academy of Sciences,undefined
[3] Bogoliubov Laboratory of Theoretical Physics,undefined
[4] Joint Institute for Nuclear Research,undefined
来源
Physics of Particles and Nuclei Letters | 2023年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:240 / 245
页数:5
相关论文
共 35 条
  • [1] Broadhurst D. J.(1995)Knots and numbers in φ Int. J. Mod. Phys. C 6 519-524
  • [2] Kreimer D.(2015) theory to 7 loops and beyond J. Number Theor. 148 478-506
  • [3] Brown F.(1980)Single-valued multiple polylogarithms and a proof of the zig-zag conjecture Nucl. Phys. B 174 345-377
  • [4] Schnetz O.(1981)New approach to evaluation of multiloop Feynman integrals: The Gegenbauer polynomial x space technique Nucl. Phys. B 192 159-204
  • [5] Chetyrkin K. G.(1983)Integration by parts: The algorithm to calculate beta functions in 4 loops Phys. Lett. B 133 406-410
  • [6] Kataev A. L.(1984)The method of uniqueness, a new powerful technique for multiloop calculation Teor. Mat. Fiz. 62 127-135
  • [7] Tkachov F. V.(1991)Multiloop calculations: method of uniqueness and functional equations Phys. Lett. 267 382-388
  • [8] Chetyrkin K. G.(2003)Calculation of multiloop diagrams in high orders of perturbation theory Nucl. Phys. B 662 461-475
  • [9] Tkachov F. V.(2008)Multiloop Feynman integrals and conformal quantum mechanics Phys. Atom. Nucl. 71 914-924
  • [10] Kazakov D. I.(2019)Operator approach to analytical evaluation of Feynman diagrams J. High Energy Phys. 08 123-134