共 35 条
- [1] Broadhurst D. J.(1995)Knots and numbers in φ Int. J. Mod. Phys. C 6 519-524
- [2] Kreimer D.(2015) theory to 7 loops and beyond J. Number Theor. 148 478-506
- [3] Brown F.(1980)Single-valued multiple polylogarithms and a proof of the zig-zag conjecture Nucl. Phys. B 174 345-377
- [4] Schnetz O.(1981)New approach to evaluation of multiloop Feynman integrals: The Gegenbauer polynomial x space technique Nucl. Phys. B 192 159-204
- [5] Chetyrkin K. G.(1983)Integration by parts: The algorithm to calculate beta functions in 4 loops Phys. Lett. B 133 406-410
- [6] Kataev A. L.(1984)The method of uniqueness, a new powerful technique for multiloop calculation Teor. Mat. Fiz. 62 127-135
- [7] Tkachov F. V.(1991)Multiloop calculations: method of uniqueness and functional equations Phys. Lett. 267 382-388
- [8] Chetyrkin K. G.(2003)Calculation of multiloop diagrams in high orders of perturbation theory Nucl. Phys. B 662 461-475
- [9] Tkachov F. V.(2008)Multiloop Feynman integrals and conformal quantum mechanics Phys. Atom. Nucl. 71 914-924
- [10] Kazakov D. I.(2019)Operator approach to analytical evaluation of Feynman diagrams J. High Energy Phys. 08 123-134