The complexity of intersecting finite automata having few final states

被引:0
作者
Michael Blondin
Andreas Krebs
Pierre McKenzie
机构
[1] Université de Montréal,Département d’informatique et de recherche opérationnelle
[2] ENS Cachan,Laboratoire Spécification et Vérification
[3] Universität Tübingen,Wilhelm
来源
computational complexity | 2016年 / 25卷
关键词
Finite automata; intersection problem; monoids; logspace; NP-complete; point-spread problem; 68Q15; 68Q25; 68Q17; 03D15; 68Q70;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of determining whether several finite automata accept a word in common is closely related to the well-studied membership problem in transformation monoids. We raise the issue of limiting the number of final states in the automata intersection problem. For automata with two final states, we show the problem to be ⊕\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\oplus}$$\end{document}L-complete or NP-complete according to whether a nontrivial monoid other than a direct product of cyclic groups of order 2 is allowed in the automata. We further consider idempotent commutative automata and (Abelian, mainly) group automata with one, two, or three final states over a singleton or larger alphabet, elucidating (under the usual hypotheses on complexity classes) the complexity of the intersection nonemptiness and related problems in each case.
引用
收藏
页码:775 / 814
页数:39
相关论文
empty
未找到相关数据