Meromorphic solutions of equations over non-Archimedean fields

被引:0
作者
Ta Thi Hoai An
Alain Escassut
机构
[1] Institute of Mathematics,Laboratoire de Mathématiques, UMR 6620
[2] Université Blaise Pascal (Clermont-Ferrand),undefined
来源
The Ramanujan Journal | 2008年 / 15卷
关键词
Nevanlinna theory; Functional equations; Uniqueness polynomials; Meromorphic functions; Curve; Singularity; 12E05; 11S80; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give some conditions to assure that the equation P(X)=Q(Y) has no meromorphic solutions in all K, where P and Q are polynomials over an algebraically closed field K of characteristic zero, complete with respect to a non-Archimedean valuation. In particular, if P and Q satisfy the hypothesis (F) introduced by H. Fujimoto, a necessary and sufficient condition is obtained when deg P=deg Q. The results are presented in terms of parametrization of a projective curve by three entire functions. In this way we also obtain similar results for unbounded analytic functions inside an open disk.
引用
收藏
页码:415 / 433
页数:18
相关论文
共 24 条
[1]  
An T.T.H.(2003)Unique range sets and uniqueness polynomials in positive characteristic Acta Arith. 109 259-280
[2]  
Wang J.T.-Y.(2005)Unique range sets and uniqueness polynomials in positive characteristic II Acta Arith. 116 115-143
[3]  
Wong P.-M.(1990)Théorie de Nevanlinna Manuscripta Math. 67 250-269
[4]  
An T.T.H.(2002)-adique Acta Arith. 103 169-189
[5]  
Wang J.T.-Y.(2004)Unique range sets in positive characteristic Am. J. Math. 126 873-889
[6]  
Wong P.-M.(1997)Rigid analytic Picard theorems Trans. Am. Math. Soc. 349 5043-5071
[7]  
Boutabaa A.(2004)Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem J. Number Theory 105 344-360
[8]  
Boutabaa A.(2000)The functional equation Am. J. Math. 122 1175-1203
[9]  
Cherry W.(1975)( Am. J. Math. 97 43-75
[10]  
Escassut A.(2001))= J. Number Theory 87 211-221