Remarks on proofs of conservation laws for nonlinear Schrödinger equations

被引:0
|
作者
T. Ozawa
机构
[1] Hokkaido University,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2006年 / 25卷
关键词
Approximate Solution; System Theory; Gauge Invariance;
D O I
暂无
中图分类号
学科分类号
摘要
Conservation laws of the charge and of the energy are proved for nonlinear Schrödinger equations with nonlinearities of gauge invariance in a way independent of approximate solutions.
引用
收藏
页码:403 / 408
页数:5
相关论文
共 50 条
  • [1] Almost conservation laws for stochastic nonlinear Schrödinger equations
    Kelvin Cheung
    Guopeng Li
    Tadahiro Oh
    Journal of Evolution Equations, 2021, 21 : 1865 - 1894
  • [2] Conservation Laws for the Schrödinger—Newton Equations
    G. Gubbiotti
    M. C. Nucci
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 292 - 299
  • [3] Remarks on scattering for nonlinear Schrödinger equations
    Kenji Nakanishi
    Tohru Ozawa
    Nonlinear Differential Equations and Applications NoDEA, 2002, 9 : 45 - 68
  • [4] Remarks on Nonlinear Schrödinger Equations with Harmonic Potential
    R. Carles
    Annales Henri Poincaré, 2002, 3 : 757 - 772
  • [5] Remarks on some systems of nonlinear Schrödinger equations
    Antonio Ambrosetti
    Journal of Fixed Point Theory and Applications, 2008, 4 : 35 - 46
  • [6] Conservation laws of the generalized nonlocal nonlinear Schrödinger equation
    Laboratory of Photonic Information Technology, South China Normal University, Guangzhou 510631, China
    Chin. Phys., 2007, 8 (2331-2337):
  • [7] Microscopic conservation laws for the derivative Nonlinear Schrödinger equation
    Xingdong Tang
    Guixiang Xu
    Letters in Mathematical Physics, 2021, 111
  • [8] Remarks on the Scattering Result of Nonlinear Schr(o|¨)dinger Equations
    苑佳
    数学进展, 2006, (02) : 254 - 256
  • [9] From conservation laws of generalized Schrödinger equations to exact solutions
    Kudryashov, Nikolay A.
    Nifontov, Daniil R.
    JOURNAL OF OPTICS-INDIA, 2024,
  • [10] Conservation laws and Darboux transformation for the coupled cubic–quintic nonlinear Schrödinger equations with variable coefficients in nonlinear optics
    Feng-Hua Qi
    Hong-Mei Ju
    Xiang-Hua Meng
    Juan Li
    Nonlinear Dynamics, 2014, 77 : 1331 - 1337